Warianty tytułu
Języki publikacji
Abstrakty
The notion of even-outer-semicontinuity for set-valued maps is introduced and compared with related ones from [4] and [11]. The coincidence of these notions provides a new characterization of compactness and of local compactness. The following result is proved: Let X be a topological space, Y a uniform space, {Fσ : σ ∈ ∑} be a net of set-valued maps from X to Y and F be a set valued map from X to Y. Then any two of the following conditions imply the third: (1) the net {Fσ : σ ∈ ∑} is evenly-outer semicontinuous; (2) the net {{Fσ : σ ∈ ∑} is graph convergent to F; (3) the net {Fσ : σ ∈ ∑} is pointwise convergent to F. This theorem generalizes some results from [4] and [11].
Czasopismo
Rocznik
Tom
Strony
213-226
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
autor
autor
- Dipartimento Di Matematica e Applicazioni Universitá Degli Studi Di Napoli Via Claudio 21, 80125 Napoli, Italy, delprete@cds.unina.it
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0013-0013