Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Z. 383 | 3-206
Tytuł artykułu

Strukturalna barierowość balistyczna tekstyliów

Autorzy
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Dotychczasowe badania i rozwój skuteczności włókienniczych barier balistycznych opierają się przede wszystkim na doskonaleniu własności wytrzymałościowych surowca użytego do ich budowy. Używane powszechnie płaskie bariery włókiennicze są to tkaniny, w których struktura geometryczna może odgrywać istotną rolę w wytrzymałości balistycznej zbudowanego z nich wyrobu. W zależności od struktury geometrycznej tkaniny, zdefiniowanej tzw. splotowymi modułami strukturalnymi, badano prędkość propagacji fali naprężeń w tkaninie przyjmując hipotezę, że ma ona wpływ na sposób i ilość pochłanianej energii kinetycznej lecącego pocisku podczas uderzenia. Zaproponowano oryginalną metodę pomiarową, dla której sformułowano równanie przetwarzania analizując zjawiska z dziedziny optyki i optoelektroniki. Stwierdzono, że w tkaninach prędkość propagacji fali naprężeń jest 2 do 5 razy mniejsza w stosunku do prędkości propagacji fali w nitce zastosowanej do jej wykonania. Istotną rolę odgrywa tutaj efekt przeplatania się nitek wątku i osnowy. Na tej podstawie zaproponowano zastosowanie struktur nieprzeplatanych o splotowym module strukturalnym typu SMS 4 do zastosowania jako warstwy w pakietach balistycznych. Opracowano stanowisko do formowania struktur arkuszowych o splotowym module strukturalnym typu SMS 4, a do ich realizacji zastosowano przędzę aramidową Twaron CT Microfilament 930 dtex. W dalszej kolejności, pakiety przeciwuderzeniowe złożone z arkuszy o strukturze typu SMS 4 poddano testom balistycznym w Laboratorium Badań Balistycznych powstałym w Katedrze Automatyzacji Procesów Włókienniczych Politechniki Łódzkiej w ramach realizacji badań w celu oceny ich własności. Zaprojektowano i wykonano tunel balistyczny do badań własności balistycznych pakietów przeciw-uderzeniowych zawierający: działo balistyczne do wystrzeliwania pocisków, system bramek do pomiaru prędkości uderzenia i prędkości resztkowej pocisku, systemy mocowania pakietu balistycznego. Dodatkowo w ramach realizacji badań zaprojektowano i wykonano kamerę do szybkiej rejestracji stożka odkształcenia pakietu balistycznego podczas uderzenia pocisku w czasie rzeczywistym. Metoda pomiarowa nie bazuje na rejestracji ciągu obrazów, lecz na ciągłym numerycznym zapisie wielkości przemieszczenia wybranej tworzącej stożka odkształcenia w stosunku do początkowej płaszczyzny próbki. Zobrazowanie stożka odkształcenia dokonuje się w procesie rekonstrukcji poprzez zastosowanie algorytmów aproksymujących, bazujących na sztucznych sieciach neuronowych. Weryfikację balistyczną opracowanych pakietów balistycznych, przeprowadzono w trzech wariantach, stosując w warstwach uzyskane arkusze o strukturze typu SMS 4 oraz w celu porównania, tkaninę o strukturze typu SMS l wykonaną w splocie płóciennym. Obie struktury zostały wykonane z tej samej przędzy aramidowej typu Twaron CT Microfilament 930dtex/flOOO. Zachowano porównywalny poziom liczności nitek dla obu kierunków pasm w strukturze typu SMS 4 oraz wątku i osnowy w tkaninie tak, aby masy powierzchniowe obu tych struktur były na zbliżonym poziomie. Poszczególne warianty złożone były z następujących warstw: - Wariant l - pakiety balistyczne złożone z warstw typu SMS 4, - Wariant 2 - pakiety balistyczne złożone z warstw typu SMS l, - Wariant 3 - pakiety balistyczne złożone naprzemian z warstw typu SMS 1 i SMS 4. W każdym wariancie próbki pakietów złożone były z następującej liczby warstw: 6, 8, 10, 12, 16, 24. Dla tak przygotowanych pakietów balistycznych, wykonano badania stożka odkształcenia i ilości pochłanianej energii kinetycznej pocisku w Laboratorium Badań Balistycznych. W badaniach zastosowano pociski typu Parabellum FMJ 9x19 mm o prędkości uderzeniowej (360110) m/s. Na podstawie wyników pomiarów opracowano charakterystyki absorbowanej energii oraz maksymalnej deformacji w funkcji masy powierzchniowej i określono granice bezpieczeństwa wynikające z I i II kryterium bezpieczeństwa pakietów balistycznych. Dodatkowo za pomocą kamery do szybkiej rejestracji analizowano rozwój stożka odkształcenia w czasie rzeczywistym. Analizując granice bezpieczeństwa wynikające z nieprzestrzelenia oraz maksymalnej wysokości stożka odkształcenia poniżej 44 mm dowiedziono, że dla pakietów balistycznych wykonanych ze struktur nieprzeplatanych SMS 4 jednoczesne spełnienie obu kryteriów podczas ostrzału pociskami występuje przy znacząco mniejszej masie powierzchniowej w stosunku do pakietów balistycznych wykonanych z tkanin o splocie płóciennym (moduł SMS 1). Tym samym zweryfikowano pozytywnie hipotezę o związku pomiędzy prędkością propagacji fali naprężeń a efektywnością balistyczną pakietów przeciwuderzeniowych. Mając na uwadze minimalizację udaru balistycznego na ciało człowieka podczas niepenetrującego uderzenia pocisku, analizowano również obszar niezerowego ciśnienia oraz prędkość deformacji pakietu balistycznego. Stwierdzono, że w chwili zatrzymania pocisku dla pakietu balistycznego typu SMS 4 obszar niezerowego ciśnienia jest dla danej liczby warstw najmniejszy w stosunku do wartości tego parametru w pozostałych badanych pakietach przy równocześnie najmniejszej wysokości stożka odkształcenia. Również maksymalna prędkość deformacji pakietu w punkcie uderzenia pocisku jest najmniejsza w pakietach typu SMS 4 przy porównywalnej masie powierzchniowej pakietów.
EN
Up till now research on flat textile ballistic barriers and improving their effectiveness was mainly based on improving strenght of raw material used for their production. However, the commonly used flat textile barriers are woven fabrics, in case of which geometrical structure may play an important role in the ballistic resistance of the product built of them. Depending on the geometrical structure of the woven fabric, defined by the so-called weave structural modules, the velocity of propagation of the tension wave was tested, as it was assumed that it can influence the amount of kinetic energy of the bullet absorbed during the stroke and the way of absorption. An original measuring method was proposed, for which a conversion equation was formed, analyzing optical and optoelectronic phenomena. Taking into account research results of velocity of propagation of the tension wave and fabric classification with a module model it was found out that two optimum fabric structures for ballistic barriers can be distinguished: - for fabrics characterized with unstable structure the ballistic barrier should take the for of a packet consisting of non-interlaced structures of the weave structural module of the type SMS 4, - for fabrics characterized with stable structure the ballistic barrier should take the for of a packet consisting of fabrics of the weave structural module of the type SMS 1 (plain weave), with maximum density of warp and weft threads. On that basis, a stand for forming sheet structures of the weave structural module of the type SMS 4 was constructed. Taking into account the investigation into the influence of the weave structural modules of the fabric on the velocity of propagation of the tension wave, such a structure should be characterized with maximum propagation velocity of the tension wave for the chosen raw material and density of threads in individual warps. Then, in the Laboratory of Ballistic Research established at the Department for Automation of Textile Processes of the Technical University of Lodz the ballistic packets consisting of sheets of the SMS 4 structure underwent ballistic tests, which helped to evaluate their ballistic properties. For that purpose a ballistic tunnel was designed and constructed for testing properties of ballistic packets, which may potentially be applied in bullet-proof vests. The properties of the ballistic tunnel: - the ballistic gun may shoot bullets which refer to testing ballistic packets in bullet-proof class II, Ha, III i Ilia, - a system of gates was installed within the tunnel for measuring the impact velocity and the residual velocity of the bullet, - the ballistic tunnel fulfills the safety criteria determined in the Act on Weapons and Ammunition, - a required permission for the ballistic tests was obtained from the Lodz Police Station. The research concerning ballistic verification of developed packets was devoted to testing the absorbed amount of kinetic energy of the bullet and forming the deformation cone during the stroke in real time. A novel, three-dimensional registering of the deformation of the ballistic packet during the stroke in real time was proposed. The measuring method is not based on registering a series of images but on a continuous numerical recording of the displacement of the selected element of the deformation cone in relation to the initial plane of the sample. Reconstruction of the deformation cone is performed by using approximation algorithms based on artificial neural networks. Three variants of the ballistic verification of the ballistic packets were carried out using: - sheets of the SMS 4 structure, - sheets of the SMS 1 structure. Both structures were made of para-aramid yarns of third generation of the type Twaron CT Microfilament 930 dtex/f 1000. A comparable density of threads for both warps in the SMS 4 structure and the density of warp and weft in the woven fabric were kept, so that the area densities of both structures remained similar. The tested variants consisted of the following layers: - Variant 1 - ballistic packets consisting of layers of the SMS 4 type, - Variant 2 - ballistic packets consisting of layers of the SMS 1 type, - Variant 3 - ballistic packets consisting alternately of layers of the SMS 1 and SMS 4 type. In each variant the sample packets consisted of 6, 8, 10, 12, 16 and 24 layers. After the ballistic packets were prepared as described above, tests were made of the deformation cone and absorbed kinetic energy of the bullet at the Laboratory of Ballistic Research. In the tests Parabellum FMJ 9x19 mm bullets of the impact speed (360+10) m/s were used. On the basis of the measurements results ballistic characteristics of the packets were determined, establishing security limits resulting from the I and II safety criterion of ballistic packets. Analyzing the security limit according to criterion I for packets of the type SMS 4, SMS 1 and SMS 1- SMA 4 it has been discovered that all types of the packets can be used for ballistic barriers. Packet SMS 1, for which the security limit is ten layers, possesses the best properties. For the remaining two types of packets the security limit is determined by packets consisting of 12 layers. Analyzing the security limit according to safety criterion II it was found out that only packets of the structure SMS 4 and SMS 1-SMS 4 fulfill the criterion for the adopted measuring conditions and boundary conditions. Ballistic packets containing layers of maximum propagation velocity of the tension wave of the SMS 4 type posses the minimum level of the maximum heights of the deformation cone in the function of the number of layers. Thus, analyzing the security limits resulting from not shooting through and maximum height of the deformation cone below 44 mm it was proven, that for ballistic packets made of non-interlaced structures SMS 4 it is possible to simultaneously fulfill both criteria during the fire by much smaller area density, comparing to ballistic packets made of fabrics with plain weave (module SMS 1). Thus, the hypothesis concerning connection between the propagation velocity of the tension wave and ballistic efficiency of the developed packets was positively verified. Apart from the maximum cavity resulting from the height of the cone in the point where the bullet strikes, another issue which is important from the point of view of the possible injuries one can suffer as a result of a non-penetrating stroke is the interaction range of the non-zero pressure on the affected object and the maximum deformation speed. Because of the elastic properties of different parts of human body, the tensions that occur inside it during a non-penetrating stroke depend not only on the depth of the deformation but also on the deformation speed. It was found out that at the moment the bullet is stopped by the ballistic packet SMS 4 the non-zero pressure zone is for the given number of layers the smallest of all the tested types of packets. Similarly, the analysis of the maximum deformation velocity has shown that in SMS 4 packets the maximum deformation speeds are the smallest. It has to be taken into consideration, that the tests were conducted without the object which is affected, which means that during a non-penetrating stroke into a human body the maximum deformation speeds are going to be smaller. However, the proportion of speed in relation to the type of the packet will be kept. Final conclusions from the conducted research. 1. Propagation velocity of the tension wave along the warp and weft threads in classic woven fabrics depends on the geometrical structure parameters of these fabric such as: weave, density of warp and weft threads. Depending on these parameters it is from 2 to 5 times smaller than the propagation velocity of the tension weave in the thread of which the fabric is made. 2. Maximum propagation velocity of the tension wave comparable to the propagation velocity of the tension wave in the thread can be observed in non-interlaced structures of a weave structural module of the type SMS 4. In case of woven structures, the largest propagation velocity of tensions can be observed in fabrics of a structural model of the SMS 1 type (plain weave), by a maximum density of warp and weft threads. 3. There are two optimum fabric structures that can be applied for the layers of a textile ballistic packet: - non-interlaced structure of a weave structural module SMS 4, - fabric of a weave structural module SMS 1 (plain weave) with maximum density of warp and weft threads. 4. For ballistic packets made of non-interlaced structures SMS 4 both safety criteria are fulfilled during fire by a significantly smaller aera density in relation to ballistic packets made of fabrics with plain weave. 5. At the moment the bullet is stopped by a ballistic packet SMS 4 the nonzero pressure zone is for the given number of layers the smallest in relation to all the other tested packets, and at the same time the deformation cone is the smallest. 6. Maximum deformation speed of the packet in the point where the bullet strikes is the lowest in SMS 4 packets, and at the same time the deformation cone is in that case the smallest, which minimizes the danger of a ballistic stroke for the human body.
Wydawca

Rocznik
Tom
Strony
3-206
Opis fizyczny
Bibliogr. 133 poz.
Twórcy
  • Katedra Automatyzacji Procesów Włókienniczych Politechnika Łódzka, stemp@p.lodz.pl
Bibliografia
  • Anderson C., Gooch W., 2001, Numerical Simulations of Dynamic X-Ray Imaging Experiments of 7,62-mm APM2 Projectiles Penetrating B4C, 19th International Symposium of Ballistics, Interlaken, Switzerland.
  • Armellino R., Armellino S., 1985, Ballistic Material for Flexible Body Armor and the Like, US Patent No. 4,522,871.
  • Barauskas R., Abraitiene A., 2006, Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA, International Journal of Impact Engineering, 34, 1286-1305.
  • Bhatnagar A., Tan C.B.C., 2005, Ballistic Fabric Laminates, US Patent No. 6,846,758.
  • Billon H.H., Robinson D.J., 2001, Models for the ballistic impact of fabric armour, International Journal of Impact Engineering, 25, 411-422.
  • Bir C., 2000, The evaluation of blunt ballistic impacts of the thorax, PhD thesis, Wayne State University, Detroit, MI.
  • Bir C., Sriram R., Lee J., Yang K., 2004a, Development and Validation of the Finite Element Human Body Model for Less - Lethal Ballistic Impacts, ISB XXth Congress - ASB 29th Annual Meeting, July 31 - August 5, Cleveland, Ohio.
  • Bir C., Viano D., King A., 2004b, Development of biomechanical response corridors of the thorax to blunt ballistic impacts, Journal of Biomechanics , Volume 37 , Issue 1.
  • Blankenhorn G., Schweizerhof K., Finckh H., 2003, Improved Numerical Investigations of a Projectile Impact on a Textile Structure, 4th European LS-DYNA Users Conference, Ulm (Germany), May 2003.
  • Bolduc M., Lazaris A., 2002, Spider Silk-Based Advanced Performance Fiber For Improved Personnel Ballistic Protection Systems, Defence R&D Canada Valcartier, Technical Memorandum, DRDC Valcartier TM 2002-222.
  • Carr D.J., 1999, Failure mechanisms of yarns subjected to ballistic impact, Journal of Materials Science Letters, 18, 585-588.
  • Chabba S., van Es M., van Klinken E.J., Jongedijk M.J., Vanek D., Gijsman P., van der Waals A.C.L.M., 2007, Accelerated aging study of ultra high molecular weight polyethylene yarn and unidirectional composites for ballistic applications, J Mater Sci, 42, 2891-2893.
  • Chocron-Benloulo I.S., Rodriguez J., Sanchez - Galvez V., 1997a, A Simple Analytical Model for Ballistic Impact in Composites, J. Phys. IV France 7, Colloque C3, Supplement au Journal de Physique III.
  • Chocron-Benloulo, I.S., Rodriguez J., Sanchez-Galvez V., 1997b, A Simple Analytical Model to Simulate Textile Fabric Ballistic Impact Behaviour, Textile Research Journal, Volume 67, No. 7, 520-528.
  • Cork C.R., Foster P.W., 2007, The ballistic performance of narrow fabrics, International Journal of Impact Engineering, 34,495-508.
  • Courtney M., Edwards B., 2006, Measuring Bullet Velocity with a PC Soundcard. http://www.ballisticstestinggroup.org.
  • Cunniff P.M., 1992, An Analysis of the System Effect in Woven Fabrics Under Ballistic Impact, Textile Res. J. 62(9), 495-509.
  • Cunniff P.M., 1999a, Dimensional parameters for optimization of textile-based body armor systems. Proceedings of the 18th International Symposium of Ballistics, San Antonio, Texas.
  • Cunniff P.M., 1999b, Dimensionless Parameters for Optimization of Textile-Based Body Armor Systems, Proceeding of the 18th International Symposium on Ballistics, San Antonio.
  • Cunniff, P.M., Auerbach M.A., Vetter E., Sikkema. D.J., 2002, High Performance "M5" Fiber for Ballistics/Structural Composites, 20th International Symposium on Ballistics September 23-27, Orlando, FL, USA.
  • Cunningham D.V., Pritchard L.E., 2005, Quasi-Unidirection Fabric for Ballistic Application, US Patent No. 6,861,378.
  • Czołczyński M., 1972, Rozchodzenie się impulsu napięciowego w nitkach oraz przechodzenie jego przez bariery cierne i masowe. Praca doktorska, Politechnika Łódzka.
  • Dischler L., 1995, Energy Absorption of a High Tenacity Fabric During a Ballistic Event, US Patent No. 5,466,503.
  • Drobin D., 2007a, Hemodynamic, Respiratory and Neurophysiological Reactions after High-Velocity Behind Armor Blunt Trauma, PhD Thesis, Karolinska Institutet, Stockholm, Sweden.
  • Drobin D., Gryth D., Persson J.K.E., Rocksen D., Arborelius U.P., Olsson L.G., Bursell J., Kjellstrom B.T., 2007b, Electroencephalogram, Circulation, and Lung Function After High-Velocity Behind Armor Blunt Trauma, Journal of Trauma-Injury Infection & Critical Care, 63(2), 405-413.
  • Duan Y.,Keefe M.,Bogetti T.A., Cheeseman B.A., 2005a, Modeling friction effects on the ballistic impact behavior of a single-ply high-strength fabric, International Journal of Impact Engineering, 31, 996-1012.
  • Duan Y., Keefe M., Bogetti T.A., Cheeseman B.A., 2005b, Modeling the role of friction during ballistic impact of a high-strength plain-weave fabric, Composite Structures, 68, 331-337.
  • Duan Y., Keefe M., Bogetti T.A., Cheeseman B.A., Powers B., 2006a, A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact, International Journal of Impact Engineering, 32, 1299-1312.
  • Duan Y., Keefe M., Bogetti T. A., Powers B., 2006b, Finite element modeling of transverse impact on a ballistic fabric, International Journal of Mechanical Sciences, 48, 33-43.
  • Duan Y., Keefe M., Wetzel E.D., Bogetti T.A., Powers B., Kirkwood J.E., Kirkwood K.M., 2005c, Effects of friction on the ballistic performance of a high-strength fabric structure, WIT Transactions on Engineering Sciences, Vol 49, Impact Loading of Lightweight Structures, ISSN 1743-3533.
  • Duan Y., Keefe M., Wetzel E.D., Bogetti T.A., Powers B., Kirkwood J.E., Kirkwood K.M., 2005d, Effects of friction on the ballistic performance of a high-strength fabric structure, International Conference on Impact Loading of Lightweight Structures Florianopolis, Brazil, 8-12 May 2005.
  • Grimal Q., Gama B.A., Naili S., Watzky A., Gillespie J.W., 2004, Finite element study of high-speed blunt impact on thorax: linear elastic considerations. International Journal of Impact Engineering, 30 (6).
  • Grimal Q.,Naili S.,Watzky A., 2002a, A study of impact wave propagation in the thorax, International Journal of Solids and Structures, 39.
  • Grimal Q., Naili S., Watzky A., 2002b, A study of transient elastic wave propagation in a bimaterial modeling the thorax. International Journal of Solids and Structures, 39.
  • Grimal Q., Naili S., Watzky A., 2002c, Transient elastic wave propagation in a spherically symmetric bimaterial medium modeling the thorax. International Journal of Solids and Structures, 39.
  • Grimal Q., Naili S., Watzky A., 2005, A high-frequency lung injury mechanism in blunt thoracic impact, Journal of Biomechanics , Volume 38 , Issue 6.
  • Grujicic M.,Bell W.C.,Arakere G.,He T.,Cheeseman B.A., 2009, A mesoscale unit-cell based material model for the single-ply flexible-fabric armor, Materials and Design, 30, 3690-3704.
  • Grujicic M., Bell W.C., He T., Cheeseman B.A., 2008, Development and verification of a mesoscale based dynamic material model for plain-woven single-ply ballistic fabric, J Mater Sci, 43, 6301-6323.
  • Gryth D., 2007, Hemodynamic, Respiratory and Neurophysiological Reactions after High-Velocity Behind Armor Blunt Trauma, Thesis for doctoral degree, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
  • Gu B., 2003, Analytical modeling for the ballistic perforation of planar plain-woven fabric target by projectile, Composites: Part B, 34, 361-371.
  • Guide to the Expression of Uncertainty in Measurement ISO, 1995. Tłumaczenie polskie: Wyrażenie niepewności pomiaru, Przewodnik GUM 1999.
  • Hamamatsu Photonics, 2001,128-element PSD array S5681, Technical note.
  • Hamamatsu Photonics, 2004, Two-dimmensional PSD S1300, Technical note.
  • Hansmann H., Chang K.K., 2003, Aramid Fibers, ASM Handbook.
  • Hardy C.E., 2002, Infrared Photodetector Apparatus for Measuring Projectile Velocity, US Patent No. 6,414,747.
  • Hiller W.J., Kowalewski T.A., Tatarczyk T., 1992, High speed frame transfer CCD, Proc. 20th Int. Congr. Of High Speed Photography and Photonics, 21-25. Sept. 1992 Victoria, Canada.
  • Holmes G.A., Rice K., Snyder C.R., 2006, Ballistic fibers: A review of the thermal, ultraviolet and hydrolytic stability of the benzoxazole ring structure, J Mater Sci, 41, 4105-4116.
  • Hosur M.V., Vaidya U.K., Ulven C., Jeelani S., 2004, Performance of stitched/unstitched woven carbon/epoxy composites under high velocity impact loading, Composite Structures, 64,455-466.
  • Iwlijew J., 1998, Zagadnienie wzajemnego oddziaływania penetratora i miękkiego pancerza z włókien chemicznych o dużej wytrzymałości, Techniczne Wyroby Włókiennicze, Nr 1, ISSN 1230-7491.
  • Jacobs M.J.N., Van Dingenen J.L.J., 2001, Ballistic protection mechanisms in personal armour, Journal of Materials Science 36 (2001) 3137-3142.
  • Kalonia R.C., Mitra G., Kumar A., Varma R.K., Singh M., Sethi V.S., 2007, Laser-based projectile speed measurement system. Opt. Eng. Vol. 46.
  • Kammer D.M., 1979, Optical Apparatus for Ballistic Measurement, US Patent No. 4,155,647.
  • Karahan M., Kus A., Erenc R., 2008, An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics, International Journal of Impact Engineering, 35, 499-510.
  • Lane R. A., 2005, High Performance Fibers for Personnel and Vehicle Armor Systems. Putting a Stop to Current and Future Threats, Amptiac Quarterly, Vol. 9, No. 2.
  • Lee Y.S., Wetzel E.D., Wagner N. J., 2003, The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid, Journal of Materials Science, 38, 2825 - 2833.
  • Lim C.T., Shim V. P. W., Ng Y.H., 2002, Finite-element modeling of the ballistic impact of fabric armor, International Journal of Impact Engineering, 28, 13-31.
  • Lim C.T., Tan V.B.C., Cheong C.H., 2002, Perforation of high-strength double-ply fabric system by varying shaped projectiles, International Journal of Impact Engineering, 27, 577-591.
  • Lyons W.J., 1963, Impact Phenomena in Textiles, Published by the Massachusetts Institute of Technology Press, Massachusetts.
  • Machalaba N.N., Budnitskii G.A., Shchetinin A.M., Frenkel G.G., 2001, Trends in the development of synthetic fibres for armor material, Fibre Chemistry, Vol. 33, No. 2, 117-126.
  • Masajtis J., 1999, Analiza strukturalna tkanin, Monografia, Polska Akademia Nauk, Łódź 1999.
  • McCrackin F.L., Schiefer H.F., Smith J.C., Stone W.K., 1955, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading: Part II. Breaking Velocities, Strain Energies, and Theory Neglecting Wave Propagation, Textile Research Journal, Vol. 25, No. 6, 529-534.
  • Miyasaka T., Kuroda K., Hirose M., Araki K., 2000, Reconstruction of Realistic 3D Surface Model and 3D Animation from Range Images Obtained by Real Time 3D Measurement System, 15th International Conference on Pattern Recognition, Barcelona, Spain, September 3-7, 594-598.
  • Morrison C., Bader M.G., 1989, Behaviour of Aramid Fibre Yarns and Composites Under Transverse Impact, Fulmer Research Institute, 706-712.
  • Musayev E., 2006, Optoelectronic methods and devices for measuring bullet velocity, Measurement Techniques, Vol. 49, No. 3, 270-275.
  • Musayev E., 2007, Laser-based large detection area speed measurement methods and systems, Optics and Lasers in Engineering, Volume 45, Issue 11, 1049-1054.
  • Mylvaganam K., Zhang L.C., 2007, Ballistic resistance capacity of carbon nanotubes, Nanotechnology, 18, 1-4.
  • Navarro C., Rodriguez J., Cortes R., 1994, Analytical modelling of composite panels subjected to impact loading, Journal de Physique IV, Colloque C8, supplement au Journal de Physique III, Volume 4.
  • NFM, 2008, Tactical textiles & Ballistic Protection 2008, Catalogue NFM Group.
  • NIJ Standard, 2008, Ballistic Resistance of Body Armor NU Standard-0101.06, U.S. U.S. Department of Justice, Office of Justice Programs, National Institute of Justice.
  • Novotny W. R., Cepus E., Shahkarami A., Vaziri R., Poursartip A., 2005a, Numerical modelling of the early impact behaviour of multi-ply fabric armours, International Conference on Impact Loading of Light Weight Structures, 8-12 May, Florianopolis - Brazil.
  • Novotny W.R., Cepus E., Shahkarami A., Vaziri R., Poursartip A., 2005b, Numerical modelling of the early impact behaviour of multi-ply fabric armours, WIT Transactions on Engineering Sciences, Vol. 49, Impact Loading of Lightweight Structures, ISSN 1743-3533.
  • Novotny W.R., Cepus E., Shahkarami A., Vaziri R., Poursartip A., 2007, Numerical investigation of the ballistic efficiency of multi-ply fabric armours during the early stages of impact, International Journal of Impact Engineering, 34, 71-88.
  • Parga-Landa B., Hernandez-Olivares F., 1995, An analytical model to predict impact behaviour of soft armours, Int. J. Impact Eng., Vol. 16, No. 3, pp. 455-466.
  • Phoenix S. L., Porwal P.K., 2003, A new membrane model for the ballistic impact response and v50 performance of multiply fibrous systems, International Journal of Solids and Structures, 40, 6723-6765.
  • Raftenberg M.N., 2004, Modeling Thoracic Blunt Trauma; Towards a Finite-Element (FE)-Based Design Methodology for Body Armor, Proceedings of Army Science Conference (ASC), Orlando, 29 Nov-2 Dec 2004.
  • Raftenberg M.N., DeMaio M., Parks S.A., Blethen W., Carlson T., Mackiewicz J.K., 2001, Blunt Trauma from Nonperforating Impact of Fabric Armor, Proceedings of the American Society of Biomechanics Annual Meeting, San Diego.
  • Raftenberg, M.N., 2003, Response of the Wayne State Thorax Model with Fabric Vest to a 9-mm Bullet, ARL-TR-2897, Army Research Laboratory, Aberdeen Proving Ground, MD.
  • Rao M.P., Duan Y., Keefe M., Powers B.M., Bogetti T.A., 2009, Modeling the effects of yarn material properties and friction on the ballistic impact of a plain-weave fabric, Composite Structures, 89, 556-566.
  • Roberts J.C., Biermann P.J., O'Connor J.V., Ward E.E., Cain R.P., Carkhuff B.G., Merkle A.C., 2005, Modeling Nonpenetrating Ballistic Impact on a Human Torso, Johns Hopkins APL Technical Digest, Volume 26, Number 1.
  • Roylance D.K., 1973, Wave Propagation in a Viscoelastic Fiber Subjected to Transverse Impact, Journal of Applied Mechanics, vol. 40, Series E, 143-148.
  • Roylance D.K., 1977, Ballistics of Transversely Impacted Fibers, Textile Research Journal, Vol. 47, 679-684.
  • Roylance O.K., Chammas P., Ting J., Chi H., Scott B., 1995, Numerical Modeling Of Fabric Impact, Procedings of the National Meeting of the American Society of Mechanical Engineers (ASME), San Francisco.
  • Roylance D.K., Wang S.S., 1979, Penetration Mechanics of Textile Structures, Technical Report Contract No. Daag 17-76-C-0013, Massachusetts Institute of Technology, Cambridge.
  • Roylance D. K., Wang S.S., 1980a, Penetration Mechanics of Textile Structures. Ballistic Materials and Penetration Mechanics, Elsevier Scientific Publishing Co., 273-292.
  • Roylance D.K., Wilde A.P., Tocci G.C., 1973, Ballistic Impact of Textile Structures, Textile Research Journal, Vol. 43, 34-41.
  • Roylance, D.K., 1980b, Stress Wave Propagation in Fibers: Effect of Cross-overs, Fiber Science and Technology, Vol. 13, 385-395.
  • Saraf H., Ramesh K.T., Lennon A.M., Merkle A.C., Roberts J.C., 2007, Mechanical properties of soft human tissues under dynamic loading, Journal of Biomechanics, 40.
  • Shen W., Niu Y., Stuhmiller J., 2005, Biomechanically Based Criteria for Rib Fractures Induced by High-Speed Impact, Journal of Trauma-Injury Infection & Critical Care, 58(3), 538-545.
  • Shim V.P.W., Tan V.B.C, Tay T.E., 1995, Modeling Deformation and Damage Characteristics of Woven Fabric under Small Projectile Impact, International Journal Impact Engineering, Vol. 16, No. 4, 585-605.
  • Shipman J.M., Judkins E.T., Martin J.R., Burkholder D.E., 2006, Digital Signal Processing Back Biased Hall Effect Muzzle Velocity Measurement System, US Patent No. 7,082,823.
  • Skubis T., 2003, Opracowanie wyników pomiarów. Przykłady, Wydawnictwo Politechniki Śląskiej, Gliwice, 2003.
  • Skubis T., 2004, Podstawy metrologicznej interpretacji wyników pomiarów, Wydawnictwo Politechniki Śląskiej, Gliwice, 2004.
  • Slepyan L.I., Ayzenberg-Stepanenko M.V., 1998, Penetration of Metal- Fabrics Composites by Small Projectiles, Personal Armour Systems, 98, 289-298.
  • Smith J.C., Blandford J.M., Schiefer H.F., 1960, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading, Part VI: Velocities of Strain Waves Resulting from Impact, Textile Research Journal, Volume 30, 752-760.
  • Smith J.C., Blandford J.M., Shouse P.J., Towne K.M., 1962a, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading: Part IX: Effect of Yarn Structure, Textile Research Journal, Vol. 32, No. 6,472-480.
  • Smith J.C., Blandford J.M., Towne K.M., 1962, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading: Part VIII: Shock Waves, Limiting Breaking Velocities, and Critical Velocities, Textile Research Journal, Vol. 32, No. 1, 67-76.
  • Smith J.C., Fenstermaker C.A., Shouse P.J., 1963, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading Part X: Stress-Strain Curves Obtained by Impact With Rifle Bullets, Textile Research Journal, Vol. 33, No. 8, 743-757.
  • Smith J.C., Fenstermaker C.A., Shouse P.J., 1965, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading Part XI: Strain Distributions Resulting from Rifle Bullet Impact, Textile Research Journal, Vol. 35, No. 8, 743-757.
  • Smith J. C., McCrackin F.L., Schiefer H.F., 1955, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading: Part III. Effect of Wave Propagation, Textile Research Journal, Vol. 25, No. 8, 701-708.
  • Smith J.C., McCrackin F.L., Schiefer H.F., Stone W.K., Towne K.M., 1956, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading. Part IV: Transverse Impact Tests, Textile Research Journal, Vol. 26, No. 11, 821-828.
  • Smith J.C., McCrackin F.L., Schiefer, H.F., 1958, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading, Part V: Wave Propagation in Long Textile Yarns Impacted Transversely, Textile Research Journal, Volume 28, No. 4, 288-302.
  • Smith J.C., Shouse P.J., Blandford J.M., Towne K.M., 1961, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading: Part VII: Stress-Strain Curves and Breaking-Energy Data for Textile Yarns, Textile Research Journal, Vol. 31, No. 8, 721-734.
  • Stempień Z., 2000, Destrukcja liniowych wyrobów włókienniczych pod wpływem wzdłużnego impulsu napięciowego. Praca doktorska, Politechnika Łódzka.
  • Stempień Z., 2004, Method of Estimation of the Tension Wave Propagation Velocity in Flat Textile Products, Fibres & Textiles in Eastern Europe, No. 3(47), p. 47-43.
  • Stempień Z., 2004a, Use of Conductive Fibers for the Estimation of the Tension Wave Propagation Velocity in Woven Fabrics, VIII International Conference IMTEX 2004, L6dz, November 22-23, s. 88-91.
  • Stempień Z., 2005, Estimation of Velocity of Propagation of the Tension Wave in Woven Fabrics, 5th AUTEX World Textile Conference, Portorož, Slovenia, 27-29 June.
  • Stempień Z., 2007, Stanowisko do pomiaru prędkości pocisku w badaniach kuloodporności pancerzy tekstylnych, XXXIX Międzyuczelniana Konferencja Metrologów, Łódź, 24-26 września 2007.
  • Stone W.K., Schiefer H.F., Fox G., 1955, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading Part I: Equipment, Testing Procedure, and Typical Results, Textile Research Journal, Vol. 25, No. 6, 520-528.
  • Szosland J., 1999, Identification of Structure of Inter-Thread Channels in Models of Woven Fabric, Fibres & Textiles in Eastern Europe, 2.
  • Szosland J., 1999a, Modelowanie przestrzeni międzynitkowych w tkaninie, Przegląd Włókienniczy, 6, s. 70-73.
  • Szosland J., 2007, Struktury tkaninowe, Monografia, Polska Akademia Nauk, Łódź.
  • Szosland J., Czołczyński M., 1977, Spannungimpulse in Faden, Textiltechnik, 27.
  • Tadeusiewicz R., 1993, Sieci neuronowe. Akademicka Oficyna Wydawnicza, Warszawa.
  • Tadeusiewicz R., Lula P., 1999, Statistica Neural Network. StatSoft Polska.
  • Talebi H., Wong S.V., Hamouda A.M.S., 2009, Finite element evaluation of projectile nose angle effects in ballistic perforation of high strength fabric, Composite Structures, 87, 314-320.
  • Tan V.B.C., Ching T.W., 2006, Computational simulation of fabric armour subjected to ballistic impacts, International Journal of Impact Engineering, 32, 1737-1751.
  • Tan V. B. C., Lim C. T., Cheong C.H., 2003, Perforation of high-strength fabric by projectiles of different geometry, International Journal of Impact Engineering, 28, 207-222.
  • Tan V.B.C., Shim V. P. W., Zeng X., 2005a, Modelling crimp in woven fabrics subjected to ballistic impact, International Journal of Impact Engineering, 32, 561-574.
  • Tan V.B.C., Tay T. E., Teo W.K., 2005b, Strengthening fabric armour with silica colloidal suspensions, International Journal of Solids and Structures, 42, 1561-1576.
  • Tan V.B.C., Zeng X.S., Shim V.P.W., 2008, Characterization and constitutive modeling of aramid fibers at high strain rates, International Journal of Impact Engineering, 35, 1303-1313.
  • Tarkowska S., Antybalistyczne właściwości ochron aramidowych w funkcji ich wytrzymałości mechanicznej, Problemy Techniki Uzbrojenia, Nr 95/2005, p. 217-225.
  • Tarkowska S., Łandwijt M., 2006, Aramidowe pakiety tkaninowe skuteczną ochrona przed pociskami pistoletowymi 9mm PARA FMJ wg zmodyfikowanego modelu Iwlijewa, Problemy Techniki Uzbrojenia, Zeszyt 98/2006.
  • Teijin Twaron BV, 2007, The Power of Aramid, Ballistic Material Handbook.
  • Ting J., Roylance D., Chi C.H., Chittangad B., 1993, Numerical Modeling of Fabric Panel Response to Ballistic Impact, 25th International SAMPE Technical Conference, October 1993.
  • Tschudi D.E., 2000, Ballistic Velocity Measurement System Having Dual Sensor Unit with Parabolic Slit Mirrors, US Patent No. 6,020,594.
  • Walker J.D., 2001, Ballistic Limit of Fabrics with Resin, 19th International Symposium of Ballistics, 7-11 May, Interlaken, Switzerland.
  • Weber K., Karmali M., 2000, High-Speed Cameras, Laser Focus World www.optoelectronics-world.com.
  • Wetzel E.D., Wagner N.J., 2002, Advanced Body Armor Utilizing Shear Thickening Fluids, 23rd Army Science Conference Orlando, 3 December 2002.
  • Wilde A., Roylance D., Rogers J., 1973, Photographic Investigation of High-Speed Missile Impact upon Nylon Fabric, Textile Res. J., 43, 753-761.
  • Wilhelm M., Bir C., 2008, Injuries to law enforcement officers: The backface signature injury, Forensic Science International, 174.
  • Xu Tao, 2002, Making Matrix-Free Spectra Fiber Reinforced Composites, The Fiber Society Annual Fall Technical Meetiing, Natick, Massachusetts, October 16-18.
  • Zeng X. S., Shim V. P. W., Tan V. B.C., 2005, Influence of boundary conditions on the ballistic performance of high-strength fabric targets, International Journal of Impact Engineering, 32, 631-642.
  • Zhang G.M., Batra R.C., Zheng J., 2008, Effect of frame size, frame type, and clamping pressure on the ballistic performance of soft body armor, Composites: Part B, 39, 476-489.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0008-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.