Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the concept of directional convex extension of the convex valued maps is introduced. Necessary and sufficient conditions for the existence of the directional convex extension of the convex valued map are obtained.
Czasopismo
Rocznik
Tom
Strony
129-138
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
Bibliografia
- [1] Aubin, J.-P., Frankowska, H., Set Valued Analysis, Birkhauser, Boston, 1990.
- [2] Duzce, S. A., Convex continuation of the convex set valued -maps and applications to the differential inclusion theory (in Turkish), PhD thesis, Anadolu University, Eskisehir, 2003.
- [3] Guseinov, Kh. G., Duzce, S. A., Ozer, O., Convex extensions of the convex set valued maps, J. Math. Anal. Appl. 314(2) (2006), 672-688.
- [4] Guseinov, Kh. G., Duzce, S. A., Ozer, O., The construction of differential inclusions with prescribed attainable sets, J. Dyn. Control Systems 14(4) (2008), 441-452.
- [5] Guseinov, Kh. G., Ozer, O., Duzce, S. A., Maximal convex continuation for convex compact set valued map (in Turkish), Anadolu Univ. J. Sci. Tech. 3 (2002), 383 388.
- [6] Guseinov, Kh. G., Ushakov, V. N., The construction of differential inclusions with prescribed properties, Differ. Equ. 36 (2000), 488-496.
- [7] Hu, Sh., Papageorgiou, N. S., Handbook of Multivalued, Analysis. Vol. I. Theory. Kluwer Academic, Dordrecht, 1997.
- [8] Rockafellar, R. T., Convex Analysis, Princeton Math. Ser. 28, Princeton Univ. Press. N. J., 1970.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0006-0038