Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 14, nr 2 | 259-271
Tytuł artykułu

Differential polynomials generated by second order linear differential equations

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study fixed points of solutions of the differential equation f" + A1 (z) f' + A0 (z) f = 0, where Aj (z) ( ≡ ≠ 0) (j = 0,1) are transcendental meromorphic functions with finite order. Instead of looking at the zeros of f (z) - z, we proceed to a slight generalization by considering zeros of g (z) -φ(z), where g is a differential polynomial in f with polynomial coefficients,φ is a small meromorphic function relative to f, while the solution f is of infinite order.
Wydawca

Rocznik
Strony
259-271
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Department of Mathematics Laboratory of Pure and Applied Mathematics University of Mostaganem, BELAIDI@UNIV-MOSTA.DZ
Bibliografia
  • [1] Chen, Z. X., Zeros of meromorphic solutions of higher order linear differential equations, Analysis (Oxford) 14 (1994), 425-438.
  • [2] Chen, Z. X., The fixed points and hyper order of solutions of second order complex differential equations (in Chinese), Acta Math. Sci. Ser. A Chin. Ed. 20(3) (2000), 425-432.
  • [3] Chen, Z. X., Shon, K. H., On the growth and fixed points of solutions of second order differential equations with meromorphic coefficients, Acta Math. Sin. (Engl. Ser.) 21(4) (2005), 753-764.
  • [4] Gundersen, G. G., On the. question of whether f" + e~z f` + Q (z)f = 0 can admit a solution f L 0 of finite order, Proc. Roy. Soc. Edinburg Sect. A 102 (1986), 9-17.
  • [5] Gundersen, G. G., Finite order solutions of second order linear differential equations. Trans. Amer. Math. Soc. 305 (1988), 415-429.
  • [6] Gundersen, G. G., Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), 88-104.
  • [7] Hayman, W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
  • [8] Hayman, W. K., The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), 317-358.
  • [9] Kinnunen, L., Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22(4) (1998), 385-405.
  • [10] Laine, I., Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter. Berlin-New York, 1993.
  • [l1] Laine, I., Rieppo, J., Differential polynomials generated by linear differential equations, Complex Var. Theory Appl. 49(12) (2004), 897-911
  • [12] Liu, M. S., Zhang, X. M., Fixed points of meromorphic solutions of higher order Linear differential equations, Ann. Acad. Sci. Fenn. Math. 31 (2006), 191-211.
  • [13] Nevanlinna, R., Eindeutige Analytische Funktionen (in German), Zweite Auflage. Reprint. Grundlehren Math. Wiss. 46, Springer-Verlag, Berlin-New York, 1974.
  • [14] Valiron, G., Lectures on the General Theory of Integral Functions, Chelsea, New York, 1949.
  • [15] Wang, J. and Yi, H. X., Fixed points and hyper order of differential polynomials generated by solutions of differential equation, Complex Var. Theory Appl. 48(1) (2003), 83-94.
  • [16] Yang, C. C., Yi, H. X., Uniqueness theory of meromorphic functions, Math. Appl. 557, Kluwer Acad. Publ. Group, Dordrecht, 2003.
  • [17] Zhang, Q. T., Yang, C. C., The Fixed Points and Resolution Theory of Meromorphic Functions (in Chinese), Beijing Univ. Press, Beijing, 1988.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0006-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.