Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 14, nr 2 | 183-192
Tytuł artykułu

Distortion and convolutional theorems for operators of generalized fractional calculus involving wright function

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the Wright's generalized hypergeornetric function, we investigate a class W(q,s: A, B, λ) of analytic functions with negative coefficients. We derive many results for the modified Hadamard product of functions belonging to the class W(q,s: A, B, λ) . Moreover, we generalize some of the distortion theorems to the classical fractional integrals and derivatives and the Saigo (hypergeornetric) operators of fractional calculus.
Wydawca

Rocznik
Strony
183-192
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
autor
Bibliografia
  • [1] Aouf, M. K., Dziok, J., Certain class of analytic Junctions associated with the Wright generalized hypergeometric function, ,J. Math. Appl. 30 (2008), 23-32.
  • [2] Dziok, J., Raina, R. K., Families of analytic functions associated with the Wright generalized hypergeometric function, Demonstratio Math. 37(3) (2004), 533-542.
  • [3] Dziok, J., Raina, R. K., Srivastava, II. M., Some classes of analytic functions associated with, operators on Hilbert. space involving Wright's generalized hypergeometric function, Proc. Jangieon Math. Soc. 7 (2004), 43-55.
  • [4] Dziok, J., Srivastava, H. M., Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), 7-18.
  • [5] Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
  • [6] Kiryakova, V., Generalized Fractional Calculus and Applications, Longman & J. Wiley, Harlow-New York, 1994.
  • [7] Kiryakova, V., Saigo, M., Criteria for generalized fractional integrals to preserve univalency of analytic functions, C. R. Acad. Bulgare Sci. 58(10) (2005), 1127-1134.
  • [8] Kiryakova, V., Saigo, M., Owa, S. Distortion and characterization theorems for generalized fractional integration operators involving H-function in subclasses of univalent functions, Fukuoka Univ. Sci. Rep. 34(1) (2004), 1-16.
  • [9] Kiryakova. V., Saigo, M., Srivastava, H. M., Some criteria for univalence of analytic functions involving generalized fractional calculus operators, Fract. Calc. Appl. Anal. 1(1) (1998), 79-104.
  • [10] Owa, S., On the distortion theorems. I, Kyungpook Math. J. 18 (1978), 53-59.
  • [11] Patel, J., Acharya, M., Certain subclasses of starlike. functions with negative coefficients. Bull. Calcuta Math. Soc. 87 (1995), 265-276.
  • [12] Prudnikov, A. P., Brychkov, Yu. A., Marichev, O. I., Integrals and Series. Vol. 3: More Special Functions, Gordon & Breach Sci. Publ., New York, 1990.
  • [13] Raina, R. K., Kalia, R. N., Characterizations for subclasses of analytic functions connecting linear fractional calculus operators, Fract. Calc. Appl. Anal. 1(4) (1998). 335-350.
  • [14] Raina, R. K., Nahar, T. S., A note on boundedness properties of Wright's generalized hypergeometric function, Ann. Math. Blaise Pascal 4 (1997), 83-95.
  • [15] Raina, R. K., Nahar, T. S., On characterization of certain Wright's generalized hypergeometric functions involving certain subclasses of analytic functions. Informatica (Vilnius) 10 (1999), 219-230.
  • [16] Raina, R. K., Nahar, T. S., On uniwalent and starlike Wright's hypergeometric functions, Rend. Sem. Mat. Univ. Padova 95 (1996), 11-22.
  • [17] Saigo, M., A certain boundary value problem for the Euler-Darboux equation, Math. Japon. 24 (1980), 377-385.
  • [18] Saigo, M., A remark on integral operators involving the Gauss hypergeornetric functions, Math. Rep. Kyushu Univ. 11 (1978), 135-143.
  • [19] Srivastava, H. M., Gupta, C. K., Goyal, S. P., The H-Functions of One and. Two Variables with Applications, South Asian Publ., New Delhi, 1982.
  • [20] Srivastava, H. M., Owa, S., An application of the fractional derivative. Math. Japon. 29 (1984), 383-389.
  • [21] Srivastava, H. M., Owa, S., (editors). Current Topics in Analytic Function Theory. World Sci. Publ. Comp., Singapore-New Jersey-London-Hong Kong, 1992.
  • [22] Srivastava, H. M.. Saigo, M., Owa, S., A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl. 131 (1988), 412-420.
  • [23] Wright, E. M., The asymptotic expansion of the generalized hypergeometric function. Proc. London Math. Soc. (3) 46 (1946), 389-408.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0006-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.