Warianty tytułu
Języki publikacji
Abstrakty
The solvability of the generalized weak vector implicit variational inequality problem, generalized strong vector implicit variational inequality problem and generalized vector varitional inequality problem are proved by using a generalized Fan's KKM theorem. Oue results extend and unify corresponding results of other authors.
Czasopismo
Rocznik
Tom
Strony
291-302
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
autor
- Department of Mathematics. Uniwersity of Isfahan, Isfahan 81745-163, Iran and Sheikhbahaee University Isfahan, Iran, jzaf@zafarani.ir
Bibliografia
- [1] Chen, G. Y., Craven, B. D., Approximate dual and approximate vector variational inequality for multiobjective optimization, J. Austral. Math. Soc. Ser. A 47 (1989), 418-423.
- [2] Chen, G. Y., Yang, X. Q., The vector complementary problem and its equivalence with the weak minimal element in ordered space, J. Math. Anal. Appl. 153 (1990), 136-158.
- [3] Chiang, Y. Semicontinuous mappings in T.V.S. with applications to mixed vector variational-like inequalities, J. Global Optim. 32 (2005), 467-486.
- [4] Daniilidis, A., Hadjisavvas, N ., Existence theorem.5 for vector variational inequalities Bull. Austral. Math. Soc. 54 (1996), 473-481.
- [5] Fakhar , M., Zafarani, J ., Generalized vector equilibrium problems for pseudomonotone bifunction, J. Optim. Theory Appl. 126 (2005), 109-124.
- [6] Fang, Y. P., Huang, N. J., Existence results for .systems of strong implicit vector variational inequalities, Acta Math. Hungar. 103 (2004), 265-279.
- [7] Fang, Y. P., Huang, N. J., Strong vector variational inequalities in Banach ,spaces, Appl. Math. Lett. 19 (2006), 675-680.
- [8] Giannessi, F., Theorems of the alternative quadratic programs and complementarity problems, in: "Variational Inequalities and Complementarity Problems" (Proc. Internat. School, Erice, 1978), Wiley, Chichester, 1980, 151-186.
- [9] Giannessi, F. (Ed.), Vector Variational Inequalities and Vector Equilibria, Nonconvex Optim. Appl. 38, Kluwer Acad. Publ., Dordrecht, 2000.
- [10] Giannessi, F., Maugeri, A. (Eds.), Variational Inequalities and Network Equilibrium Problems (Erice 1994), Plenum, New York, 1995.
- [11] Giannessi, F., Maugeri, A. (Eds.), Variational Analysis and Applications, Nonconvex Optim. Appl. 79, Springer, New York, 2005.
- [12] Huang, N. J., Li, J., Thompson, H. B., Implicit vector equilibrium problems with applications, Math. Comput. Modelling 37 (2003), 1343-1356.
- [13] Huang, N.J., Li, J., On vector implicit variational inequalities and complementarity problems, J. Global Optim. 34 (2006), 399-408.
- [14] Konnov, I. V., Yao, J. C., On the generalized vector variational inequality problem, J. Math. Anal. Appl. 206 (1997), 42-58.
- [15] Lee, G. M., Kim, D. S., Lee, B, S., Chen, G. Y., Generalized vector variotional inequality and its duality for set-valued maps, Appl. Math. Lett. 11 (1998), 21-26.
- [16] Rapcsak, T., On vector complentarity systems and vector variational inequalities, in: "Vector Variational Inequalities and Vector Eequilibria", Nonconvex Optim, Appl. 38, Kluwer Acad. Publ., Dordrecht, 2000.
- [17] Schaefer, H. H., Topological Vector Spaces, Springer-Verlag, New York, 1991.
- [18] Siddiqi, A. H., Ansari, Q. H., Khaliq, A., On vector variational inequalities, J. Optim. Theory Appl. 84 (1995), 171-180.
- [19] Tan, N. X., Tinh, P. N., On the existence of equilibrium points of vector functions, Numer. Funct. Anal. Optim. 19 (1998), 141-156.
- [20] Tian, G Q., Generalizations of the FKKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium, and complementarity, J. Math. Anal. Appl. 170 (1992), 457-471.
- [21] Yang, X. Q., Generalized convex functions and vector variational inequalities, J. Optim. Theory Appl. 79 (1993), 563-580.
- [22] Yang, X. Q., On vector variational inequalities: Application to vector equlibria. J. Optim. Theory Appl. 95 (1997), 729-734.
- [23] Yang, X. Q., Yu, H., Vector variational inequalities and dynamic traffic equilibria, in : "Variational Analysis and Application", Nonconvex Optim. Appl. 79, Springer, New York, 2005, 1141-1157.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0002-0043