Czasopismo
2006
|
Vol. 10, nr 1
|
110-116
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Complete synchronization of coupled chaotic systems is usually a primary and crucial issue. Coupling in mechanical systems introduces mutual perturbation of their dynamics. In case of identical systems such perturbation can lead to the synchronization. We can predict the synchronization threshold of such systems using a concept called Master Stability Function (MSF). As a tool of MSF we use transverse Lyapunov exponents, which characterize the stability of synchronization state. We show areas of synchronization in coupling parameters space in typical nonlinear systems: Duffing and Duffing - Van der Pol oscillators.
Czasopismo
Rocznik
Tom
Strony
110-116
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
autor
- Technical University of Lodz, Division of Dynamics Stefanowskiego 1/15, 90-924 Lodz, Poland
Bibliografia
- [1] Boccaletti S., Kurths J., Osipov G., Valladares D., Zhou C.: The synchronization of chaotic systems. Physics Reports 366, 2002.
- [2] Doroshko S. M., Sopulis J.: On the effect of self-synchronization in the twin-engine gas turbine power plants. Computer Modelling & New Technologies, 3, 140-145 (1999).
- [3] Kapitaniak T.: Chaos for Engineers, Springer (2000).
- [4] Parker T., Chua L.: Practical numerical algorithms for chaotic systems, Springer-Verlag New York (1989).
- [5] Pecora L. and Carroll T.:Synchronization in chaotic systems. Physical Review Letters, 64, 821 (1990).
- [6] Pecora L. and Carroll T.: Master Stability Functions for Synchronized Coupled Systems. Physical Review Letters, 80, 2109 (1998).
- [7] Stefański A., Kapitaniak T.: Synchronization of two chaotic oscillators via negative feedback mechanism. Int. Journal of Solids and Structures, 40, 5175 (2003).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD5-0006-0008