Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 11, nr 2 | 171-186
Tytuł artykułu

Maximal solutions and existence theory for fuzzy differential and integral equations

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New existence resilts are prosented for fuzzy differential and integral equations. Our analysis combines the stacking theorem with results concerning the maximal solution for an appropriate differential equation.
Wydawca

Rocznik
Strony
171-186
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901-6975, USA, agarwal@fit.edu
autor
  • Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901-6975, USA, lakshmik@fit.edu
Bibliografia
  • [1] Agarwal, R. P., O'Regan, D., A note on the structure of the solution set for the Cauchy differential inclusion in Banach spaces, in „Set Valued Mappings with Applications in Nonlinear Analysis”, (eds. R. P. Agarwal and D. O'Regan), Taylor and Francis Publishers, London, 2002, 11-15.
  • [2] Agarwal, R. P., O'Regan, D., Lakshmikantham, V., Fuzzy Volterra integral equations: a stacking theorem approach, Appl. Anal. 83 (2004), 521-532.
  • [3] Agarwal, R. P., O'Regan, D., Lakshmikantham, V., A stacking theorem approach for fuzzy differential equations, Nonlinear Anal. 55 (2003), 299-312.
  • [4] Aubin, J. P., Cellina, A., Differential Inclusions, Springer Verlag, New York, 1984.
  • [5] Conway, J., A Course in Functional Analysis, Springer Verlag, New York, 1990.
  • [6] Corduneanu, C, Integral Equations and Applications, Cambridge University Press, New York, 1991.
  • [7] Diamond, P., Theory and applications of fuzzy Volterra integral equations, preprint.
  • [8] Diamond, P., Watson, P., Regularity of solution sets for differential inclusions quasi-concave in parameter, Appl. Math. Lett. 13 (2000), 31-35.
  • [9] Górniewicz, L., Topological Fixed Point Theory of Multivalued Maps, Kluwer Acad. Publishers, Dordrecht, 1999.
  • [10] Hüllermeier, E., An approach to modelling and simulation of uncertain dynamical systems, Internat. J. Uncertain. Fuzziness and Knowledge-Based Systems 5 (1997), 117-137.
  • [11] Kuratowski, K., Topology, Vol. 2, Academic Press, New York, 1968.
  • [12] Lakshmikantham, V., Leela, S., Differential and Integral Inequalities, Vol. I, Academic Press, New York, 1969.
  • [13] Lakshmikantham, V., Mohapatra, R., Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis Publishers, London, 2003.
  • [14] Negoita, C. V., Ralescu, D. A., Applications of Fuzzy Sets to System Analysis, John Wiley & Sons, New York, 1975.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0001-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.