Warianty tytułu
Języki publikacji
Abstrakty
We prove that the Covering Property Axiom CPAgame/prism, which holds in the iterated perfect set model, implies that there ex-ists an additive discontinuous almost continuous function f : R -> R whose graph is of measure zero. We also show that, under CPAgame/prism, there exists a Hamel basis H for which. E+(H), the set of all linear combinations of elements from H with positive rational coefficients, is of measure zero. The existence of both of these examples follows from Martin's axiom. while it is unknown whether either of them can be constructed in ZFC. As a tool for the constructions we will show that CPAgame/prism implies its seemingly stronger version, in which ω-many games are played simultaneously.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
153-170
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA, k_cles@math.wvu.edu
autor
- Department of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland, pawlikow@math.unl.wroc.pl
Bibliografia
- [1] Ciesielski, K., Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts 39, Cambridge Univ. Press, Cambridge, 1997.
- [2] Ciesielski, K., Some additive Darboux-like functions, J. Appl. Anal. 4(1) (1998), 43-51. (Preprint available.)
- [3] Ciesielski, K., Jastrzębski, J., Darboux-lihe functions within the classes of Baire one. Baire two, and additive functions, Topology Appl. 103 (2000), 203-219. (Preprint available.)
- [4] Ciesielski, K., Pawlikowski, J., Covering Property Axiom CP/lcube and its consequences, Fund. Math. 176(1) (2003), 63-75. (Preprint available.)
- [5] Ciesielski, K., Pawlikowski, J., Crowded and selective ultrafilters under the Covering Property Axiom, J. Appl. Anal. 9(1) (2003), 19-55. (Preprint available.)
- [6] Ciesielski, K., Pawlikowski, J., Uncountable intersections of open sets under CPAprism, Proc. Amer. Math. Soc. 132(11) (2004), 3379-3385. (Preprint available.)
- [7] Ciesielski, K., Pawlikowski, J., Small coverings with smooth functions under the Covering Property Axiom, Canad. J. Math. 57(3) (2005), 471-493. (Preprint available.)
- [8] Ciesielski, K., Pawlikowski, J., Nice Hamel bases under the Covering Property Axiom, Acta Math. Hungar. 105(3) (2004), 197-213. (Preprint available.)
- [9] Ciesielski, K., Pawlikowski, J., Covering Property Axiom CPA. A Combinatorial Core of the Iterated Perfect Set Model, Cambridge Tracts in Math. 164, Cambridge Univ. Press, Cambridge, 2004.
- [10] Erdös, P., On some properties of Hamel bases, Colloq. Math. 10 (1963), 267-269.
- [11] Kanovei, V., Non-Glimm-Effros equivalence relations at second projective level, Fund. Math. 154 (1997), 1-35.
- [12] Kellum, K. R., Sums and limits of almost continuous functions, Colloq. Math. 31 (1974), 125-128.
- [13] Kellum, K. R., Almost continuity and connectivity — sometimes it's as easy as to prove a stronger result, Real Anal. Exchange 8 (1982-83), 244-252.
- [14] Miller, H., On a property of Hamel bases, Boll. Un. Mat. Ital. A(7) 3 (1989), 39-43.
- [15] Muthuvel, K., Some results concerning Hamel bases, Real Anal. Exchange 18(2) (1992-93), 571-574.
- [16] Natkaniec, T., Almost continuity, Real Anal. Exchange 17 (1991-92), 462-520.
- [17] Zapletal, J., Descriptive Set Theory and Definable Forcing, Mem. Amer. Math. Soc. 167, Amer. Math. Soc, Providence, RI, 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0001-0022