Warianty tytułu
Języki publikacji
Abstrakty
We provide stability results for the family Lκu=∇Fκ(u) where Lκ is positive definite and selfadjoint operator and ∇Fκ for κ=0,1,2,... is a gradient mapping. The abstract results obtained are applied to prove the stability and continuous dependence on parameters for the fourth order Dirichlet problems for ordinary differential equations with the differential operator depending on numerical parameters.
Czasopismo
Rocznik
Tom
Strony
71-81
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Faculty of Mathematics. University of Łódź, Banacha 22, 90-238 Łódź, Poland, galewski@math.uni.lodz.pl
Bibliografia
- [1] Ekeland, I., Temam, R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
- [2] Galewski, M., A new variational principle and duality for abstract Dirichlet problem, Ann. Polon. Math. 82 (2003), 51-60.
- [3] Galewski, M., Stability ol solutions for an abstract Dirichlet problem, Ann. Polon. Math. 833 (2004), 273-280.
- [4] Idczak, D., Stability in semilinear problems, J. Differential Equations 162 (2000), 64-90.
- [5] Idczak, D., Rogowski, A., On a generalization ofKrasnoselskii's theorem, J. Austral. Math. Soc. Ser. A 72 (2002), 389-394.
- [6] Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980.
- [7] Nowakowski, A., A new variational principle and duality for periodic solutions of Hamilton's equations, J. Differential Eąuations 97(1) (1992),174-188.
- [8] Nowakowski, A., Rogowski, A., Dependance on parameters for the Dirichlet problem with superlinear nonlinearities, Topol. Methods Nonlinear Anal. 16 (2000), 145-160.
- [9] Walczak, S., On the continuous dependance on parameters of solutions of the Dirichlet problem. Part I. Coercive case; Part II. The case of saddle points, Acad. Roy. Belg. Bull. Cl. Sci. (6) 6 (1995), 247-273.
- [10] Walczak, S., Continuous dependance on pammeters and boundary data for nonlinear P.D.E. Coercive case, Differential Integral Equations 11 (1998), 35-46.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0001-0007