Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 12, nr 1 | 19-36
Tytuł artykułu

An elastic contact problem with adhesion and normal compliance

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study a mathematical problem describing the friction- less adhesive contact between an elastic body and a foundation. The adhesion process is modelled by a surface variable, the bonding field, and the contact is modelled with a normal compliance condition; the tangential shear due to the bonding field is included; the elastic consti- tutive law is assumed to be nonlinear and the process is quasistatic. The problem is formulated as a nonlinear system in which the unknowns are the displacement, the stress and the bonding field. The existence of a unique weak solution for the problem is established by using arguments for differential equations followed by the construction of an appropriate contraction mapping.
Wydawca

Rocznik
Strony
19-36
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
autor
  • Laboratoire de Mathematiques et dePhysique pour les Systemes. Universite de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France, sofonea@univ-perp.fr
Bibliografia
  • [1] Andrews, K. T., Chapman, L., Fernandez, J. R., Fisackerly, M., Shillor, M., Vanerian, l., VanHouten, T., A membrane in adhesive contact, SIAM J. Appl. Math. 64 (2003), 152-169.
  • [2] Andrews, K. T., Shillor, M., Dynamic adhesive contact of a membmne, Adv. Math. Sci. Appl. 13 (2003), 343-356.
  • [3] Chau, O., Fernandez, J. R., Shillor, M., Sofonea, M., Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion, J. Comput. Appl. Math. 159 (2003), 431-465.
  • [4] Chau, 0., Shillor, M., Sofonea, M., Dynamic frictionless contact with adhesion, J. Appl. Math. Phys. (ZAMP) 55 (2004), 32-47.
  • [5] Curnier, A., Talon, C., A model of adhesion added to contact with friction, in "Contact Mechanics", JAC Martins and MDP Monteiro Marques (eds.), Kluwer, Dordrecht, 2002, 161-168.
  • [6] Fernandez, J. R., Shillor, M., Sofonea, M., Analysis and numerical simulations of a dynamic contact problem with adhesion, Math. Comput. Modelling 37 (2003), 1311-1333.
  • [7] Fremond, M., Equilibre des structures qui adherent a leur support, C. R. Acad. Sci. Paris ser. II Mec. Phys. Chim. Sci. Univers Sci. Terre 295 (1982), 913-916.
  • [8] Fremond, M., Adherence des solides, J. Mec. Theor. Appl. 6 (1987),383-407.
  • [9] Han, W., Kuttler, K. L., Shillor, M., Sofonea, M., Elastic beam in adhesive contact, Internat. J. Solids Structures 39 (2002), 1145-1164.
  • [10] Han, W., Sofonea, M., Quasistatic Contact Problems in Viscoelasticityand Viscoplasticity, Stud. Adv. Math. 30, Amer. Math. Soc., Providence, RI-International Press, Somerville, MA, 2002.
  • [11] Hemici, N., Awbi, B., Sofonea, M., A viscoelastic frictionless contact problem with normal compliance and adhesion, An. Univ. Bucuresti Mat. 51 (2002), 145-156.
  • [12] Jianu, L., Shillor, M., Sofonea, M., A Iriscoelastic bilateral frictionless contact problem with adhesion, Appl. Anal. 80 (2001), 233-255.
  • [13] Necas, J., Hlavacek, I., Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction, Elsevier, Amsterdam, 1981.
  • [14] Rao11S, M., Cangemi, L., Cocu, M., A consistent model coupling adhesion, friction, and unilateral contact, Comput. Methods Appl. Mech. Engrg. 177 (1999), 383-399.
  • [15] Rojek, J., Telega, J. J., Contact problems with friction, adhesion and wear in orthopaedic biomechanics. I: General de.velopments, J. Theoret. Appl. Mech. 39 (2001),655-677.
  • [16] Rojek, J., Telega, J. J., Stupkiewicz, S., Cońtact problems with friction, adhesion and wear in orthopaedic biomechanics. II: Numerical implementation and application to implanted knee joints, J. Theoret. Appl. Mech. 39 (2001), 679-706.
  • [17] Shillor, M., Sofonea, M., Telega, J. J., Models and Variational Analysis of Quasistatic Contact, Lecture Notes in Phys. 655, Springer, Berlin-Heidelberg, 2004.
  • [18] Sofonea, M., Matei, A., Elastic antiplane contact problem with adhesion, J. Appl. Math. Phys. (ZAMP) 53 (2002),962-972.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0001-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.