Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Z. 69 | 59-66
Tytuł artykułu

Immobilization of yeast cells in alginate gels for ethanol production-potentialities and limitations

Autorzy
Warianty tytułu
PL
Immobilizacja komórek drożdży w żelach alginianowych dla produkcji etanolu - możliwości i ograniczenia
Języki publikacji
EN
Abstrakty
EN
The characteristic of immobilization technique in alginate gels was described. The environmental factors which determine physiological state of entrapped cells were presented. The possibility of using the system of different yeast strains (coimmobilization) for bioconversion of starch to ethanol was considered.
PL
W oparciu o dane literatury przedstawiono techniki immobilizacji komórek mikroorganizmów. Omówiono czynniki środowiskowe wpływające na stan fizjologiczny unieruchomionych komórek drożdży. Rozważono możliwości zastosowania systemu różnych szczepów drożdży (koimmobilizacjia) w procesie biokonwersji skrobi do etanolu.
Wydawca

Rocznik
Tom
Strony
59-66
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Instytut Technologii Fermentacji i Mikrobiologii, Politechnika Łódzka
Bibliografia
  • [1] Angelova M.B., Pashova S.B., Slokoska L.S.: Comparison of antioxidant enzyme biosynthesis by free and immobilized Aspergillus niger cells. Enzyme Microb. Technol. 26, 365-375, (2000).
  • [2] De Alteris E., Porro D., Romano V., Parascandola P.: Relation between growth dynamic and diffusional limitations in Saccharomyces cerevisiae cells growing as entrapped in an insolubilised gelatin gel. FEMS Microbiol. Lett. 195, 245-251, (2001).
  • [3] De Mot R., Van Dijck K., Donkers A., Verachtert H.: Potentialities and limitations of direct alcoholic fermentation of starchy material with amylolytic yeasts. Appl. Microbiol. Biotechnol. 22, 222-226, (1985).
  • [4] Dohmen R.J., Strasser A.W.M, Dahlems U.M., Hollenberg C.P.: Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene 95, 111-121, (1990).
  • [5] Dohmen R.J., Strasser A.W.M., Zitomer R.S., Hollenberg C.P.: Regulated overproduction of alpha-amylase by transformation of the amylolytic yeast Schwanniomyces occidentalis .Curr. Genet. 15, 319-325, (1989).
  • [6] Drewicz E., Kręgiel D., Oberman H.: Wzrost i aktywność fermentacyjna drożdży Saccharomyces cerevisiae w obecności toksyny killerowej. Biotechnologia 45, 25- 37, (1999).
  • [7] Farid M.A., El-Enshasy H.A., Noor EI-Deen A.M.: Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds. J. Basic Microbiol. 43, 162-171, (2002).
  • [8] Freeman A., Lilly M.D.: Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells. Enzyme Microbial Technology 23, 335-345, (1998).
  • [9] Hilge-Rotmann B., Rehm H-J.: Relationship between fermentation capability and fatty acid composition of free and immobilized Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 34, 502-508, (1991).
  • [10] Horn C.H., du Preez J., Kilian S.G.: Protein enrichment of grain sorghum by submerged culture of amylolytic yeast Schwanniomyces occidentalis and Lipomyces kononenkoae. World J. Microbiol. Biotechnol. 8, 416-422, (1992).
  • [11] Hsu W-Р., Bernstein L.: A new type of bioreactor employing immobilized yeast. Master Brewers’ Association of America Technical Quarterly 22, 159-161, (1985).
  • [12] Ingledev W.M.: Schwanniomyces: a potential superyeast? Crit. Rev. Biotechnol. 5, 159-176,(1987).
  • [13] Jamai L., Sendide K., Ettayebi K., Errachidi F., Hamdouni-Alami O., Tahri- Jouti M.A., McDermott T., Ettayebi M.: Physiological difference during ethanol fermentation between calcium alginate-immobilized Candida tropicalis and Saccharmyces cerevisiae. FEMS Microbiol. Lett. 204, 375-379, (2001).
  • [14] Jirku V.: Whole-cell immobilization as a means of enhancing ethanol tolerance. J. Ind. Microbiol. Biotechnol. 22, 147-151, (1999).
  • [15] Junter G., Coquet L., Vilain S., Jouenne T.: Immobilized-cell physiology: current data and the potentialities of proteomics. Enzyme Microb. Technol. 31, 201-212, (2002).
  • [16] Kanda T., Miyata N., Fukui T., Kawamoto T., Tanaka A.: Doubly entrapped baker’s yeast survives during the long-term stereoselective reduction of ethyl 3-oxobutanoate in an organic solvent. Appl. Microbiol. Biotechnol. 49, 377-381, (1998).
  • [17] Kourkoutas Y., Bekatorou A., Banat I.M., Marchant R., Koutinas A.A.: Immobilization technologies and support materials suitable in alcohol beverages production. Food Microbiol. 21, 377-397, (2004).
  • [18] Kręgiel D.: Amylazy drożdży Schwanniomyces sp. Post. Mikrobiol. 37, 57-71, (1998).
  • [19] Kronlöf J.: Immobilized yeast in continuous fermentation of beer. VTT publ. 167- 96, (1994).
  • [20] Kronlöf J., Linko M.: Production of beer using immobilized yeast encoding alpha-acetolactate decarboxylase. J. Inst. Brew. 98, 479-491, (1992).
  • [21] Li X.: The use of chitosan to increase the stability of calcium alginate beads with entrapped yeast cells. Biotechnol. Appl. Biochem. 23, 269-272, (1996).
  • [22] Mensour N.A., Margaritis A., Briens C.L., Pilkington H., Russell I.: New developments in the brewing industry using immobilized yeast cell bioreactors. J. Inst. Brew. 103, 363-370, (1997).
  • [23] Mofidi N., Aghai-Moghadam M., Sarbolouki M.N.: Mass preparation and characterization of alginate microspheres. Process Biochem. 35, 885-888, (2000).
  • [24] Nedović V.A., Obradović B., Leskošek-Čukalovic L, Trifunović O., Pešic R., Bugarski B.: Electrostatic generation of alginate microbeads loaded with brewing yeast. Process Biochem. 37, 17-22, (2001).
  • [25] Nigham P., Singh D.: Enzyme and microbial systems involved in starch processing. Enzyme and Microbial Technology 17, 770-778, (1995).
  • [26] Norton S., D’Amore T.: Physiological effects of yeast cell immobilization: applications for brewing. Enzyme Microb. Technol. 16, 365-375, (1994).
  • [27] Norton S., Watson K., D’Amore T.: Ethanol tolerance of immobilized brewers’ yeast cells. Appl. Microbiol. Biotechnol. 43, 18-24, (1995).
  • [28] O’Reilly A.M., Scott J.A.: Defined coimmobilization of mixed microorganism cultures. Enzyme Microbial Technology 17, 636-646, (1995).
  • [29] Oberman H., Stobińska H., Kręgiel D., Pabiniak L: Wykorzystanie odpadowych surowców celulozowo-skrobiowych przez drożdże Trichosporon sp. i Schwanniomyces sp. Materiały XXII Sesji Naukowej KTChiŻ PAN, Olsztyn, 1991.
  • [30] Parascandola P., de Alteriis E., Sentandreu R., Zueco J.: Immobilization and ethanol stress induce the same molecular response at the level of cell wall in growing yeast. FEMS Microb. Lett. 150, 121-126, (1997).
  • [31] Piontek M., Hagedorn J., Hollenberg C.P., Gebissen G., Strasser A.W.M.: Two novel gene expression systems based on the yeasts Schwanniomyces occidentalis and Pichia stipitis. Appl. Microbiol. Biotechnol. 50, 331-338, (1998).
  • [32] Ryu Y.W. Ko S.H., Byun S.Y., Kim C Direct alcohol fermentation of starch by a derepressed mutant of Schwanniomyces castellii. Biotechnol. Lett. 16, 107-112, (1994).
  • [33] Shapiro J.A.: Thinking about bacterial populations as multicellular organisms. Annu Rev. Microbiol. 52, 81-104, (1998).
  • [34] Stobińska H., Kręgiel D., Oberman H.: Improvement of Schwanniomyces occidentalis yeast strains by mutation and regeneration of protoplasts. Acta Alim. Polon. 17, 145-158, (1991).
  • [35] Strasser A.W., Selk R., Dohmen R.J., Niermann T., Seeboth P., Tu G.H., Hollenberg C.P.: Analysis of the alpha-amylase gene of Schwanniomyces occidentalis and the secretion of its gene product in transformants of different yeast genera. Eur. J. Biochem. 184, 699-706, (1989).
  • [36] Van Dijken J.P., Westhuis R.A., Pronk J.T.: Kinetics of growth and sugar consumption in yeasts. Antonie van Leeuwenhoeck 63, 343-352, (1993).
  • [37] Van Urk H., Voll W.S.L., Dcheffers W.A., van Dijken J Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl. Environ. Microbiol. 56, 281-287, (1990).
  • [38] Varon M., Choder M.: Organization and cell-cell interaction in starved Saccharomyces cerevisiae colonies. J. Bacteriol. 182, 3877-3880, (2000).
  • [39] Virkajarvi L, Kronlöf J.: Long-term stability of immobilized yeast columns in primary fermentation. J. Am. Soc. Brew. Chem. 56, 70-75, (1997).
  • [40] Wang T-Т., Lee Ch-F., Lee B.H.: The molecular biology of Schwanniomyces occidentalis Klocker. Crit. Rev. Biotechnol. 19, 113-143, (1999).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD3-0010-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.