Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 14, nr 1 | 57-78
Tytuł artykułu

An Efficient Method to Evaluate CRC-Polynomials for Safety-Critical Industrial Communication

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
System Modelling Control (XI; 17-19.10.2005; Zakopane; Poland)
Języki publikacji
EN
Abstrakty
EN
The Cyclic Redundancy Check (CRC) is an efficient method to detect errors in data transmission using a checksum as a result of polynomial division. The quality of this technique depends extremely on the divisor polynomial used. Although CRC is well established in communication, it is still a challenge to identify suitable polynomials, since the determination of the characteristics of a polynomial is usually very complex. In the paper a method is presented that handles the complexity by means of deterministic and stochastic automata.
Wydawca

Rocznik
Strony
57-78
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
  • Munich University of Technology Institute of Information Technology in Mechanical Engineering Automation Group Boltzmannstr. 15, D-85748 Garching near Munich, Schiller@itm.tum.de
Bibliografia
  • [1] Blahut, R. E. (2003). Algebraic codes for data transmission, Cambridge University Press.
  • [2] Castagnoli, G., (1989). On the Minimum Distance of Long Cyclic Codes and Cyclic Redundancy-Check Codes, ETH Zurich, Diss. No. 8979.
  • [3] Hamming, R. W. (1950). Error Detecting and Error Correcting Codes. In: Bell System Tech. J., No. 29, pp. 147-160.
  • [4] International Electrotechnical Commission (2005). Functional safety of electrical/electronic/ programmable electronic safety-related systems, (IEC 61508).
  • [5] Koopman, P. and T. Chakravarty (2004). Cyclic Redundancy Code (CRC) Polynomial Selection for Embedded Networks. In: International Conference on Dependable Systems and Networks, DSN 2004, pp. 145-154. Florence, Italy.
  • [6] Lunze, J. and J. Schröder (2001). State observation and diagnosis of discrete-event systems described by stochastic automata. In: Discrete Event Dynamic Systems: Theory and Applications, No. 11, pp. 319-369.
  • [7] MacWilliams, F.J. and N.J.A. Sloane (1991). The Theory of Error-Correcting Codes, North-Holland Mathematical Library.
  • [8] Mattes, T. (2004). Untersuchungen zur effizienten Bestimmung der Güte von Polynomen für CRC-Codes, Univ. of Trier, Siemens AG, Nuremberg.
  • [9] Merchant, K. (2003). CRC-Test einmal ganz anders betrachtet. In: Elektronik, 23/2003, pp. 86-92.
  • [10] Peterson, W.W. and E.J. Weldon (1996). Error Correcting Codes, MIT Press.
  • [11] Schiller, F. and T. Mattes (2005). An efficient method to evaluate CRC polynomials for safety-critical industrial communication. In: 11th Int. Symposium on System-Modelling-Control, SMC 2005, pp. 269-274. Zakopane, Poland.
  • [12] Sweeney, P. (1991). Error Control Coding, Prentice Hall, London.
  • [13] Tanenbaum, A. (1996). Computer Networks, Prentice Hall, London.
  • [14] Wagner, M. (1993). CRC-Verfahren in der Theorie und Praxis, Grundlagen der Implementierung und Prüfung von CRC-Tests, Siemens AG, Nuremberg.
  • [15] Wagner, M. (1986). On the Error Detecting Capability of CRC Polynomials. In: Informationstechnik it, 28. Jahrgang, No. 4/1986, pp. 236-241.
  • [16] Wolf, J. K., A. Michaelson and A. Levesque (1982). On the probability of undetected errors for linear block codes. In: IEEE Transactions on communications, Vol. 30, No. 2, pp. 317-324.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD2-0009-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.