Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | T. 65, nr 4 | 34-36
Tytuł artykułu

Kazeinomakropeptyd - właściwości technologiczne i żywieniowe

Warianty tytułu
EN
Caseinomacropeptide - technological and nutritive properties
Języki publikacji
PL
Abstrakty
PL
Kazeinomakropeptyd (CMP) jest częścią κ-kazeiny, która jest uwalniana podczas hydrolizy za pomocą enzymów proteolitycznych. CMP występuje w mleku krowim w dwóch wariantach - A i B, różniących się składem aminokwasowym. CMP jest wykorzystywany w produkcji nowej żywności o potencjalnych właściwościach prozdrowotnych i w produktach specjalnego przeznaczenia żywieniowego. Ma zdolność wiązania toksyn, ograniczania adhezji bakterii i wirusów. CMP jest uważany za potencjalny prebiotyk. Polipeptyd ten zmniejsza wydzielanie kwasów żołądkowych. CMP nie zawiera w swoim składzie fenyloalaniny, dlatego może być źródłem białka w diecie osób chorych na fenyloketonurię.
EN
Caseinomacropeptide (CMP) is a fragment of κ-casein that is released by proteolytic enzymes. CMP occurs in bovine milk in two genetic variants, A and B, which differ with amino acid composition. In the recent years, CMP has become a subject of growing interest, due to its beneficial, biological and functional properties. CMP has ability to bind toxins and inhibit bacterial and viral adhesion. It is also considered as a prebiotic in functional foods. It significantly reduces gastric acid secretion. CMP is the only naturally occurring protein that does not contain phenylalanine; this is why it is often utilized as a source of protein for dietary management of phenylketonuria.
Wydawca

Rocznik
Strony
34-36
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
autor
autor
  • Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie
Bibliografia
  • 1. Abd El-Salam M. H., El-Shibiny S., Buchheim W. (1996) Characteristics and potential uses of the casein macropeptide. International Dairy Journal 6, 327-341
  • 2. Ahmed J., Ramaswamy H. S. (2003) Effect of high-hydrostatic pressure and temperature on rheological characteristics of glycomacropeptide. Journal of Dairy Science 86, 1535-1540
  • 3. Aimutis W. R. (2004) Bioactive properties of milk proteins with particular focus on anticariogenesis. Journal of Nutrition 134, 989S-995S
  • 4. Bal dit Sollier C., Drouet L., Pignaud G., Chevalier C., Caen J. P., Fiat A.M. i in. (1996) Effect of ?-casein derived peptides on platelet aggregation and on thrombus formation in the guinea pig. Thrombosis Research, 81, 427-437.
  • 5. Bouhallab, S., Favrot, C., Maubois, J. L. (1993) Growth-promoting activity of tryptic digest of caseinomacropeptide of Lactococcus lactis subsp. lactis. Le Lait, 73, 73-77
  • 6. Brody E. P. (2000) Biological activities of bovine glycomacropeptide. British Journal of Nutrition 84, Suppl. 1, S39-S46
  • 7. Bruck, W. M., Kelleher, S. L., Gibson, G. R., Nielsen, K. E., Chatterton, D. E. W., Lonnerdal, B. (2003) rRNA probes used to quantify the effects of glycomacropeptide and a-lactalbumin supplementation on the predominant groups of intestinal bacteria of infant rhesus monkeys challenged with enteropathogenic Escherichia coli. Journal of Paediatric Gastroenterology and Nutrition, 37, 273-280
  • 8. Burton J., Skudder P. J. (1987) Whey proteins. UK Patent Application GB 2188526 A1
  • 9. Burton-Freeman B. (2008) Glycomacropeptide (GMP) is not critical to whey-induced satiety, but may have a unique role in energy intake regulation through cholecystokinin (CCK). Physiology & Behavior 93, 379-387
  • 10. Chabance B., Marteau P., Rambaud J. C., Migliore-Samour D., i in. (1998) Casein peptide release and passage to the blood in humans during digestion of milk or yogurt. Biochimie 80, 155-165
  • 11. Chobert J., M., Touati A., Bertrandharb C., Dalgalarrondo M., Nicolas M. G. (1989) Solubility and emulsifying properties of ?-casein and its caseinomacropeptide. Journal of Food Biochemistry 13, 457-473
  • 12. Chung Chun Lam S.M.S., Moughan P.J., Awati A., Morton H.R., (2009) The influence of whey protein and glycomacropeptide on satiety in adult humans. Physiology & Behavior 96, 162-168
  • 13. Dartey, C., Leveille, G., & Sox, T. E. (2003). Compositions for appetite control and related methods. US Patent 0,059,495 A1
  • 14. Etzel, M. R. (2004) Manufacture and use of dairy protein fractions. Journal of Nutrition, 134, 996S-1002S
  • 15. Farias M.E., Martinez M.J., Pilosof A.M.R. (2010) Casein glycomacropeptide pH-dependent self-assembly and cold gelation. International Dairy Journal 20, 79-88
  • 16. Fosset S., Fromentin G., Gietzen D. W. i in. (2002) Peptide fragments released from Phe-caseinomacropeptide in vivo in the rat. Peptides 23, 1773-1781
  • 17. Guilloteau P., Romé V., Delaby L., Mendy F., Roger L., Chayvialle J. A. (2010) Is caseinomacropeptide from milk proteins, an inhibitor of gastric secretion? Regulatory Peptides 159, 129-136
  • 18. Gustafson, D. R., McMahon, D. J., Morrey, J., Nan, R. (2001) Appetite is not in?uenced by a unique milk peptide: Caseinomacropeptide (CMP). Appetite, 36, 157-163
  • 19. Hiroshi I., Kawasaki I. (2001) Gelling agent and gel-like food. Japanese Patent, JP 2001045987
  • 20. Janer C., Peláez C., Requena T. (1994) Caseinomacropeptide and whey protein concentrate enhance Bifidobacterium lactis growth in milk. Food Chemistry 86, 263-267
  • 21. Janer C., J. Díaz C. Peláez, T. Requena. (2004) The effect of caseinomacropeptide and whey protein concentrate on Streptococcus mutans adhesion to polystyrene surfaces and cell aggregation. Journal of Food Quality 27, 233-238
  • 22. Kreuß M., Krause I., Kulozik U. (2008) Separation of a glycosylated and non-glycosylated fraction of caseinomacropeptide using different anion-exchange stationary phases. Journal of Chromatography A 1208, 126-132
  • 23. Kreuß M., Krause I., Kulozik U. (2009a) Influence of glycosylation on foaming properties of bovine caseinomacropeptide. International Dairy Journal 19, 715-720
  • 24. Kreuß M., Strixner T., Kulozik U. (2009b) The effect of glycosylation on the interfacial properties of bovine caseinomacropeptide. Food Hydrocolloids 23 1818-1826
  • 25. LaClair C. E., Ney D. M., MacLeon E. L., Etzel M. R. (2009) Purification and use of glycomacropeptide for nutritional management phenylketonuria. Journal of Food Science, 74 (4),199-206
  • 26. Lim K., Calcar van S. C., Nelson K. L., Gleason S. T., Ney D. M. (2007) Acceptable low-phenylalanine foods and beverages can be made with glycomacropeptide from cheese whey for individuals with PKU, Molecular Genetics and Metabolism 92, 176-178
  • 27. Malkoski, M., Dashper, S. G., O'Brien-Simpson, N. M., Talbo, G. H., Macris, M., Cross, K. J., i in. (2001) Kappacin, a novel antibacterial peptide from bovine milk. Antimicrobial Agents and Chemotherapy, 45, 2309-2315
  • 28. Manso M. A., Lopez-Fandino R. (2003) Angiotensin I converting enzyme-inhibitory activity of bovine, ovine and caprine ?-caseinmacropeptides and their tryptic hydrolyzates. Journal of Food Protection, 66, 1686-1692
  • 29. Marshall S. C. (1991) Casein macropeptide from whey-A new product opportunity. Food Research Quaterly 51, 86-91
  • 30. Martin-Diana A. B., Fraga M. J., Fontecha J. (2002) Isolation and characterisation of caseinmacropeptide from bovine, ovine, and caprine cheese whey. European Food Research Technology 214, 282-286
  • 31. Martin-Diana A. B., Peláez C., Requena T. (2004) Rheological and structural properties of fermented goat's milk supplemented with caseinomacropeptide and whey protein concentrate. Milchwissenschaft 59, 383-386
  • 32. Metwally M. M., El-Shibiny S., Dieb S. M. El., El-Etriby H. M. M, Assem F. A. (2001) Large scale preparation and growth promoting effects on Bifidobacterium of glycomacropeptide from sweet whey. Egyptian Journal of Dairy Science 29, 29-36
  • 33. Mollé D., Léonil J. (2005) Quantitative determination of bovine ?-casein macropeptide in dairy products by liquid chromatography/electrospray coupled to mass spektrometry (LC-ESI/MS) and liquid chromatography/electrospray coupled to tamdem mass spektrometry (LC-ESI/MS/MS). International Dairy Journal 15, 419-428
  • 34. Monnai M., HorimotoY., Otani H. (1998) Immunomodificatory effect of dietary bovine ?-caseinoglycopeptide on serum antibody levels and proliferative responses of lyphocytes in mice. Milchwissenschaft 53, 129-132
  • 35. Moreno F. J., López-Fandino R., Olano A. (2002) Characterization and functional properties of lactosyl caseinomacropeptide conjugates. Journal of Agricultural and Food Chemistry, 50, 5179-5184
  • 36. Ney D. M., Gleason S. T., Calcar van S. C., MacLeod E. L., Nelson K. L., Etzel M. R., Rice G. M., Wolff J. A. (2009) Nutritional management of PKU with glycomacropeptide from cheese whey. Journal of Inherited Metabolic Disease 32, 32-39
  • 37. Otte, J., Midtgaard, L., Qvist, K. B. (1995). Analysis of caseinomacropeptide(s) by free solution capillary electrophoresis. Milchwissenchaft, 50, 75-79
  • 38. Pedersen N. L. R., Nagain-Domaine C., Mahe S., Chariot J., Roze C., Tome D. (2000) Caseinomacropeptide specifically stimulates exorcine pancreatic secretion in the anesthetized rat. Peptides 21, 1527-1535
  • 39. Rhoades J. R., Gibson G. R., Formentin K., Beer M., Greenberg N., Rastall R. A. (2005) Caseinoglycomacropeptide inhibits adhesion of pathogenic Escherichia coli strains to human cells in culture. Journal of Dairy Science 88, 3455-3459
  • 40. Royle P. J., McIntosh G. H., Clifton P. M. (2008) Whey protein isolate and glycomacropeptide decrease weight gain and alter body composition in male Wistar rats. British Journal of Nutrition, 100, 88-93
  • 41. Rutherfurd, K. J., Gill, H. S. (2000) Peptides affecting coagulation. British Journal of Nutrition, 84, S99-S102
  • 42. Saito T., Yamaji A., Itoh T. (1991) A new isolation method of caseinomacropeptide from sweet cheese whey. Journal of Dairy Science 74, 2831-2837
  • 43. Setarehnejad A., Kanekanian A., Tatham A., Abed A. (2010) The protective effect of caseinomacropeptide against dental erosion using hydroxyapatite as a model system. International Dairy Journal. 20 (9), 652-656
  • 44. Smith M. H., Edwards P. J. B., Palmano K. P., Creamer L. K. (2002) Structural features of bovine caseinomacropeptide A and B by H nuclear magnetic resonance spectroscopy. Journal of Dairy Research, 69, 85-94
  • 45. Thoma, C., Krause, I., Kulozik, U. (2006) Precipitation behaviour of caseinomacropeptides and their simultaneous determination with whey proteins by RP-HPLC. International Dairy Journal, 16, 285-293
  • 46. Tolkach A., Kulozik U. (2005) Fractionation of whey proteins and caseinomacropeptide by means of enzymatic crosslinking and membrane separation techniques. Journal of Food Engineering 67, 13-20
  • 47. Vacca Smith A. M., Bowen W. H (2000) The effect of milk and κ-casein on salivary pellicle formed on hydroxyapatite discs in situ. Caries Research 34, 88-93
  • 48. Wang B, Brand-Miller J, McVeagh P, Petocz P. (2001) Concentration and distribution of sialic acid in human milk and infant formulas. Am J Clin Nutr 74, 510-515
  • 49. Xu, Y., Sleigh, R., Hourigan, J., Johnson, R. (2000) Separation of bovine immunoglobulin G and glycomacropeptide from dairy whey. Process Biochemistry, 36, 393-399
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD1-0025-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.