Warianty tytułu
Cooling systems of infrared detectors
Języki publikacji
Abstrakty
W pracy przedstawiono podstawy fizyczne i analizę działania termoelektrycznych elementów stosowanych do chłodzenia detektorów podczerwieni. Wyniki zamieszczonych obliczeń pokazująpotencjalne możliwości zastosowań tego typu struktur w sprzęcie termowizyjnym, jak i ograniczenia wynikające dużego poboru energii i niewielkiej różnicy temperatury między "zimnym" i "gorącym" punktem elementu. Ponadto omówiono chłodziarki działające z wykorzystaniem termodynamicznych przemian gazowych: Joula--Thomsona i pracujące w cyklu Stirlinga.
This paper presents three main cooling systems for infrared detectors. At first thermoelectric devices are discussed. They allow cooling down the detector with quite poor efficiency and not to the very low temperature. They do not generate any vibrations and that is why they are suitable to thermal detectors. Photon detectors need to be cooled down even to 77K or better. The only way to have such deep cooling is to use thermodynamic engines working based on thermodynamic reversible cycles, such as Stirling one. With the high efficiency one can easily obtain cryogenic temperature for the detector. The noise and vibration generation are the main disadvantages of use of this device as well as electromagnetic influence of the compression engine on the high impedance detectors. Joule-Thomson effect during gas expansion is 3rd cooling system discussed in the paper. It is highly effective process, used for gas liquefying too, but the gas is being removed during cooling into the atmosphere, so the need of continuous availability of compressed gas makes this system very difficult for remote applications. In the paper, simple calculations are presented to illustrate the advantages and disadvantages of the different cooling systems.
Czasopismo
Rocznik
Tom
Strony
79-106
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Institute of Electronics, Technical University of Łódź
Bibliografia
- [1] Szalimowa K. W., Fizyka półprzewodników, PWN, Warszawa, 1974.
- [2] The CAMBION Thermoelectric Handbook, Second edition, Cambridge thermoionic Corporation, Cambridge, Massachusetts, 1972.
- [3] Shakouri A., Bowers J., Thermoelectric Cooling in Bulk Quantum Well semiconductors, University of California Santa Barbara, 1996.
- [4] Mahan, G.D., Lyon, H.B., Jr., Thermoelectric devices using semiconductor quantum wells. Journal of Applied Physics, 1 Aug. 1994, vol.76, (no.3):1899-1901.
- [5] Broido, D.A, Reinecke, T.L. Thermoelectric figure of merit of quantum wire superlattices. Applied Physics Letters, 3 July 1995, vol.67, (no.l):100-102.
- [6] Slack G. A., New materials and Performance Limits for Thermoelectric cooling. In CRC Handbook of Thermoelectrics; Rowe D.M. (Ed.), CRC Press: Boca Raton, FL, 1995,407-440.
- [7] Mahan, G.D., Solid State Physics, Ehrenreich, H. and Spaepen, F. (Eds.), Academic Press, New York-1997.
- [8] Min G., Rowe, D.M., Kontostavlakis K., Thermoelectric figure-of-merit under large temperature differences, Journal Phys. D: Appl. Physics. 37,2004, 1301-1304.
- [9] Egli P.H. (Ed.), Thermoelectricity, John Wiley and Sons, New York, 1960.
- [10] W.Greiner, L.Neise, H. Stocker, Thermodynamics and Statistical Mechanics, Springer Verlag, 1995.
- [11] Y. Cengel, M. Boles, Thermodynamics, 3rd Edition, McGraw-Hill, New York, 1998.
- [12] F. Incropera, D. DeWitt, Introduction to Heat Transfer, 3rd Edition, John Wiley & Sons, New York, 1996.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD1-0018-0004