Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | nr 10 | 7-22
Tytuł artykułu

Aktualne kierunki rozwoju elektroniki spinowej

Autorzy
Warianty tytułu
EN
Current researches in the spintronics
Języki publikacji
PL
Abstrakty
PL
Elektronika spinowa (spintronika) stanowi jedną z dróg rozwoju nanoelektroniki. Artykuł poświęcony jest omówieniu zasad działania i najważniejszych zastosowań przyrządów spintroniki, opartych na zjawiskach magnetycznych występujących w magnetycznych strukturach wielowarstwowych typu GMR oraz tunelowych złączach magnetycznych. Szczególna uwaga została zwrócona na jedno z najważniejszych zastosowań elektroniki spinowej, jakim są pamięci magnetyczne, obecnie powszechnie stosowane, m.in. w systemach napędowych dysków twardych i telefonii komórkowej.
EN
The field of spintronics has its roots dating back to the 1930, when it was first discovered that electrical transport in ferromagnetic metals is comprised of largely independent currents of majority and minority spinelectrons. Generating, manipulating and detecting such spin-polarized current is the essence of spin-electronics. The use of electron spin as a new degree-of-freedom in electron devices offers new functionality and performance. The discovery of enhanced magneto-resistance and oscillatory interlayer exchange coupling in transition metal-multilayers has enabled the development of new classes of magnetically engineered magnetic thin-film materials suitable for advanced magnetic sensors and magnetic random access memories. Commercial success has already been realized in all-metal structures based on giand magneto-resistance a new and entirely spin-derived functionality. The giant magneto-resistance effect (GMR) is due to spin transport between two ferromagnetic metals separated by a nonmagnetic spacer metal and refers to the increase in resistance which occurs when the relative orientation of the magnetic moments of the two magnetic layers is changed from parallel to anti-parallel. The largest GMR in magnetic multilayers are noted for magnetic structures containing the thinnest possible magnetic and nonmagnetic layers. This is because the GMR effect is dominated by spin-dependant scattering at the magnetic/nonmagnetic interfaces. IBM was the first company, which have used GMR in read head sensors. Now this kind of heads is found in virtually all hard disk drives produced today. As the areal density of magnetic recording disc drives continues to increase at an extremely high rate an alternatives to GMR sensors are needed. One of various approaches is introducing the spintronic devices with magnetic tunnel junctions, which are based on quantum mechanical tunneling of spin-polarized electrons through a very thin insulator layer. As nowadays the spin electronics became recognized as an large, dynamic field of research representing one of the most promising way for future technology, in this paper only an general overview is given and the main points are underlined.
Wydawca

Rocznik
Tom
Strony
7-22
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Institute of Electronics, Technical University of Łódź, 18 Stefanowskiego, 90-924 Łódź tel. 4842 6312624, zdzislaw@p.lodz.pl
Bibliografia
  • [1] Chang-Gyu Hwang, Nanotechnology Enables a New Memory Growth Model, Proc. of IEEE, Vol. 91, No.ll, November 2003, pp. 1765-1771.
  • [2] Chun-Yen Chang, The Highlight in the Nano World, Proc. of IEEE, Vol. 91, No.ll, November 2003, pp. 1756-1764.
  • [3] J. Daughton, Spin- Dependent Sensors, Proc. of IEEE, Vol. 91, No.5, May 2003, pp. 681-686.
  • [4] W. Dehaene in. A 50-MHz Standard CMOS Puis Equilizerfor Hard Disk Read Channels, IEEE J. of SSC, Vol. 32, No 7, July 1997, pp. 977- 988.
  • [5] B. T. Joker, Progress Towerd Electrical Injection of Spin-Polarized Electrons into Semicoductors, Proc. of IEEE, Vol. 91, No.5, May 2003, pp. 727 - 740.
  • [6] M. Jonson, Overview of Spin Transport Elektronics in Metal, Proc. of IEEE, Vol. 91, No.5, May 2003, pp. 652 - 660.
  • [7] R. R. Katti, Giant Magnetoresistive Random-Access Memories Based on Current-in-Plane Devices, Proc. of IEEE, Vol. 91, No.5, May 2003, pp. 687 -702.
  • [8] Z. Korzec, Nanoelektronika - elektronika XXI wieku, Elektronika, Prace Naukowe Instytutu Elektroniki PŁ, Zeszyt No 4, pp. 5-18, 1999
  • [9] Z. Korzec, Nanoelektronowe przyrządy półprzewodnikowe jednoelektrodowe, Elektronika, Prace Naukowe Instytutu Elektroniki PŁ, Zeszyt No 5, pp. 5 -20, 2000.
  • [10] S. v. Molnâr, D.Read, New Materials for Semiconductor Spin-Electronics, Proc. of IEEE, Vol. 91, No.5, May 2003, pp. 715 - 726.
  • [11] S.Parkin i in.: Magnetically Engineered Spintronic Sensors and Memory, Proc. of IEEE, Vol. 91, No.5, May 2003, pp. 661 - 680.
  • [12] V. A. Sih i in. Optical and Electronic Manipulation of Spin Coherence in Semiconductors, Proc. of IEEE, Vol. 91, No.5, May 2003, pp. 752 - 760.
  • [13] S. Tehrani i in. Magnetoresistive Random Access Memory Using Magnetic Tunnel Junctions, Proc. of IEEE, Vol. 91, No.5, May 2003, pp. 703 - 714.
  • [14] Z. Wilamowski, Spintronika, Postępy Fizyki, Zeszyt 3, Tom 55, pp. 115-119, 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD1-0001-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.