Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | nr 9 | 418-425
Tytuł artykułu

Badanie skraplania czynników chłodniczych w mini wymiennikach ciepła

Warianty tytułu
EN
The study condensation of refrigerants in mini heat exchangers
Języki publikacji
PL
Abstrakty
PL
Jedną z biernych metod intensyfikacji procesu konwekcyjnej wymiany ciepła jest zmniejszenie średnicy kanałów dla przepływu czynników realizujących taki proces. Miarą efektywności tej intensyfikacji jest, między innymi, wzrost wartości współczynnika przejmowania ciepła. Efektem tego są małe wymiary gabarytowe wymiennika ciepła i osiągana w nim wysoka efektywność przekazywania ciepła. Kryteria takie spełniają tzw. kompaktowe wymienniki ciepła. W artykule podano ogólną charakterystykę techniczną takich wymienników. Przedstawiono publikowane wyniki badań różnych autorów w zakresie wymiany ciepła i oporów przepływu podczas skraplania w sekcjach wielokanałowych skraplaczy kompaktowych. Opisano budowę specjalnego stanowiska badawczego oraz przedstawiono wybrane wyniki własnych badań eksperymentalnych dla skraplania czynników chłodniczych R 134a, R 404A i R 407C wraz z ich końcową analizą. Obiektem tych badań były dwa pęczki minikanałów rurowych
EN
One of the passive methods for the intensification of convective heat exchange is to reduce the diameter of the channels for the flow of agents pursuing such a process. The measure of the effectiveness of this intensification is, among other things, increase the heat transfer coefficient. The result this are the small dimensions of the heat exchanger and reached its high efficiency heat transfer. Such criteria shall meet so. compact heat exchangers. The article provides general technical characteristics of such heat exchangers. Presented published results of different authors in the field of heat transfer and pressure drop during condensation in the sections of multi-channel condensers the compact. Describes the construction of special test and presents selected results of their experimental for condensing refrigerants R-134a, R 404A and R-407C, with their final analysis. The object of this research were two bunches tubular channels
Wydawca

Rocznik
Tom
Strony
418-425
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
autor
autor
autor
  • Politechnika Koszalińska
Bibliografia
  • 1. Akers w., Deans O.K., Cross er O.K.: Condensation heat transfer within horizontal tubes. Chem. Eng. Progr., 1958, vol. 54, pp. 89-90.
  • 2. Baummer T., Cetegen E., Ohadi M., Dessiatoun S.: Force fed evaporation and condensation utilizing advanced microstructured surfaces and microchannels, Microelectronics Journal, 2008, vol. 39, No. 7, pp. 975 - 980.
  • 3. Bohdal T., Charun H., Kuczyński W.: Investigation of the condensation process in the mini-systems of compressor refrigerating systems. Proc. of Conference COMPRESSSORS·2009. pp. 1-8.
  • 4. Bohdal T.. Charun H .. Kuczyński W .. Sikora L: Investigation of heat exchange and flow resistances during condensation of refrigeration media in minichanneIs. XIX International Symposium, Research-Education-Technology. 2009 Bremen, pp. 1-8
  • 5. Bohdal T.. Charun H., Sikora M.: Comparative investigations of the condensarion of R134a and R404A refrigerants in pipe minichanneIs. Int. J. Heat Mass Transfer, 20 II, '01. 54. pp. 1963-1974.
  • 6. Cavallini A., Dei Col D.. Rossetto L.: Frictional pressure drop during vapour liquid flow in minichanneIs: Modelling and experimental evaluation. lnt. J. of Heat and Fluid Flow, 2009, vol. 30(1), pp. 131-139.
  • 7. Chamra L.M., Webb R.L.: Advanced micro-fin tubes for condensation. lnt. J. Heat Mass Transfer, 1996, vol. 39, pp. 1839-1846.
  • 8. Eckels SJ., Pate M.B.: An experimental comparison of evaporation and condensation heat transfer coefficients for HFC-134a and CFC-12. lnt. 1. Refrigeration, 1991, vo1.l4, pp. 70-77.
  • 9. Friedel L.: Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow. European Two-Phase Flow Group Meeting, Paper No. 2, lspra, Italy 1987.
  • 10. Garimella S., Agarwal A., Killion J.D.: Condensation pressure drp in circular microchannels. Heat Transfer Engineering, 2005, vol. 26, pp. 1-8.
  • 11. Ghiasian S.M.: Two - phase flow, boiling and condensation in conventional and miniature systems. Cambridge University Press 2008.
  • 12. Heun M.K.: Performance and optimization of microchannels condensers. Ph.D. Thesis 1995, University of Illinois (USA).
  • 13. Kandlikar S.G., Garimella S., LI D., Colin S., King M.R.: Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier 2006.
  • 14. Kim J.S.: Condensation heat transfer and pressure drop ofHFC-134a inside a flat extruded aluminum tube. Proc. Of the KSME Autumn Conference, Korea 1996, vol. B, pp. 755-762.
  • 15. Koyama S., Kuwahara K., Nakashita K., Yamamoto K.: An experimental study on condensation of refrigerant R134a in a multi-port extruded tube. lnt. Journal of Refrigeration, 2003, vol. 26(4), pp. 425-432.
  • 16. Liu x.: Condensing and evaporating heat transfer and pressure drop characteristics of HFC-I 34a and HCF-22. J. Heat Transfer 1997, vol. 119, pp. 158-163.
  • 17. Mehendele S.S., Jacobi A.M., Shah R.K.: Fluid flow and heat transfer at micro and mesoscales with application to heat exchanger design. Applied Mechanics Reviews 2000, vo!. 53, No. 7, pp. 175-193.
  • 18. Mikielewicz D.: Wrzenie i kondensacja w przepływie w kanałach i mikrokanałach. Wyd. Uczelniane Politechniki Gdańskiej, Gdansk 2009.
  • 19. Mishima K., Hibiki T.: Effect of inner diameter on some characteristics of air-water two-phase flow in capillary tubes. Trans. ISME (B), 1995, vol. 61, pp. 99-106.
  • 20. Moser K., Webb R.L.: A new equivalent Reynolds number model for condensation in smooth tubes. 1. Heat Transfer 1998, vol. 120, pp. 410-417.
  • 21. Obhan C.B., Garimella S.: A comparative analysis of studies on heat transfer and fluid flow in microchannels. Microscale Thermophys, 2001, vol 5, No. 4, pp. 293 - 311.
  • 22. Schlager L.M., Pate M.B., Bergles A.E.: Evaporation and condensation heat transfer and pressure drop in horizontal 12,7 - mm micro-fin tubes with refrigerant. J. Heat Transfer 1990, vol. 112, pp. 1041-1047.
  • 23. Schlager L.M., Pate M.B., Bergles A.E.: Heat transfer and pressure drop during evaporation and condensation of R22 in horizontal miicro-fin tubes. Int. J. Refrigeration, 1989, vol. 12, pp. 6-14.
  • 24. Shin J.S., Kim M.H.: An experimental study of condensation heat transfer inside a mini-channel with a new measurement technique. Int. J. of Multiphase Flow 2004, vol. 30, pp. 311-325.
  • 25. Webb R.L., Ermis K.: Effect of hydraulic diameter on condensation of RI34a in flat extruded aluminum tubes. J. Enhanced Heat Transfer 200 I, vol. 8(2), s. 77-90.
  • 26. Zhang M., Webb R.L.: Correlation of two-phase friction for refrigerants in small-diameter tubes. Exp. Thermal and Fluid Science 2001, vol. 25, pp. 131-139.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM8-0017-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.