Warianty tytułu
Języki publikacji
Abstrakty
Purpose: In the paper physical (surface topography, electrical properties) and antithrombogenic properties of the passive-carbon layer used for enhancing the surface properties of vascular stents made of Cr-Ni-Mo steel have been investigated. Design/methodology/approach: To characterize the electrical properties of carbon layer the silicon plate was used. The resistivity ρ and relative permittivity of the layer ε r have been determined on the basis of currentvoltage and capacitance-voltage characteristics. In vitro tests of biotolerance evaluation of the passive-carbon layer in blood environment have been carried out in the haemolysis tests (in the direct contact and from the extract) and in the blood clotting tests. Findings: The results of investigations have shown that deposition process of the passive-carbon layer of dielectric properties on the surface of implants made of Cr-Ni-Mo steel and used in interventional cardiology is an effective way of limiting the reactivity of their surface in blood environment and the blood clotting process in consequence. Research limitations/implications: Usefulness of the passive-carbon layer for interventional cardiology applications should be verified in in vivo tests. Originality/value: Modification of physical properties of surface of the metallic biomaterials applied in cardiovascular system by deposition of the passive-carbon layer which has dielectric properties limits the blood clotting process.
Słowa kluczowe
Rocznik
Tom
Strony
348-355
Opis fizyczny
. Biblogr. 33 poz., wykr.
Twórcy
autor
autor
autor
- Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, zbigniew.paszenda@polsl.pl
Bibliografia
- [1] O. Bertrand, R. Sipehia, R. Mongrain, J. Rodes, J. Tardif, Biocompatibility aspects of new stent technology, Journal of the American College of Cardiology 32 (1998) 562-571.
- [2] J. Y. Chen, Y. Leng, X. B. Tian, L. P. Wang, N. Huang, P. K. Chu, P. Yang, Antithrombotic investigation of surface energy and optical bandgap and haemocompatibility mechanism of Ti(Ta+5)O2 thin films, Biomaterials 23 (2002) 2545-2552.
- [3] K. Christensen, R. Larsson, H. Emanuelsson, G. Elgue, A. Larsson, Heparin coating of the stent graft-effects on platelets, coagulation and complement activation, Biomaterials 22 (2001) 349-355.
- [4] A. Colombo, G. Stankovic, J. Moses, Selection of coronary stent, Journal of the American College of Cardiology 6 (2002) 1021-1033.
- [5] P. de Feyter, The quest for the ideal stent, European Heart Journal 22 (2001) 1766-1768.
- [6] P. de Feyter, D. Foley, Coronary stent implantation: a panacea for the interventional cardiologist?, European Heart Journal 21 (2000) 1719-1726.
- [7] R. Hoffmann, G. Mintz, Coronary in stent restenosis- predictors, treatment and prevention, European Heart Journal 21 (2000) 1739-1749.
- [8] N. Huang, P. Yang, X. Cheng, Y. Leng, X. Zheng, Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition, Biomaterials 19 (1998) 771-776.
- [9] N. Huang, P. Yang, Y. Leng, J. Chen, H. Sun, J. Wang, Hemocompatibility of titanium oxide films, Biomaterials 24 (2003) 177-2187.
- [10] M. Kaczmarek, J. Tyrlik-Held, Z. Paszenda, J. Marciniak, Stents characteristics in application and material aspect, Proceedings of the 12th International Scientific Conference ”Achievements in Mechanical and Materials Engineering” AMME'2003, Gliwice-Zakopane, 2003, 421-428.
- [11] J. Lahann, D. Klee, H. Thelen, H. Bienert, D. Vorverk, H. Hocker, Improvement of haemocompatibility of metallic stents by polymer coating, Journal of Materials Science: Materials in Medicine 10 (1999) 443-448.
- [12] J. Marciniak, R. Bedzinski, E. Rusinski, T. Smolnicki, Biomechanical characteristics of the stent-coronary vessel system, Acta of Bioengineering and Biomechanics 4 (2002) 81-89.
- [13] G. Michenatzis, N. Katsala, Y. Missirlis, Comparison of haemocompatibility improvement of four polymeric biomaterials by two heparinization techniques, Biomaterials 24 (2003) 677-688.
- [14] Z. Paszenda, J. Tyrlik-Held, Z. Nawrat, J. Zak, K. Wilczek, Corrosion resistance investigations of coronary stents with regard to specificity of coronary vessels system, Engineering of Biomaterials 34 (2004) 26-33.
- [15] Z. Paszenda, Corrosion resistance of coronary stents in conditions of coronary angioplasty, Corrosion Protection 11s/A (2004) 195-198 (in Polish).
- [16] Z. Paszenda, Forming of physico-chemical properties of coronary stents made of Cr-Ni-Mo steel applied in interventional cardiology, Printing House of the Silesian University of Technology, Gliwice, 2005 (in Polish).
- [17] Z. Paszenda, Z. Nawrat, Physico-chemical properties of coronary stents during variable loadings, Proceedings of the 11th International Scientific Conference ”Achievements in Mechanical and Materials Engineering” AMME'2002, Gliwice-Zakopane, 2002, 429-436.
- [18] Z. Paszenda, J. Tyrlik-Held, Usefulness of carbon layer on implants in interventional cardiology, Proceedings of the 11th International Scientific Conference ”Achievements in Mechanical and Materials Engineering” AMME'2002, Gliwice-Zakopane, 2002, 437-442.
- [19] Z. Paszenda, J. Tyrlik-Held, Corrosion resistance of coronary stents made of Cr-Ni-Mo steel, Proceedings of the 10th Jubilee International Scientific Conference ”Achievements in Mechanical and Materials Engineering” AMME'2001, Gliwice-Kraków Zakopane, 2001, 453-460.
- [20] Z. Paszenda, J. Tyrlik-Held, W. Jurkiewicz, Investigations of antithrombogenic properties of passive-carbon layer, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 197-200.
- [21] Z. Paszenda, J. Tyrlik-Held, W. Chrzanowski, J. Lelatko, Structure investigations of passive-carbon layer on coronary stents of Cr-Ni-Mo steel, Engineering of Biomaterials 46 (2005) 6-8.
- [22] Z. Paszenda, J. Tyrlik-Held, J. Marciniak, J. Lelatko, Structure and surface morfology investigations of passivecarbon film on Cr-Ni-Mo implantation steel, Proceedings of the 19th European Conference ”Biomaterials” ESB'2005, Sorrento, 2005, 360-250.
- [23] Z. Paszenda, J. Tyrlik-Held, Z. Nawrat, J. Zak, J. Wilczek, Usefulness of passive-carbon layer for implants applied in interventional cardiology, Journal of Materials Processing Technology 157-158 C (2004) 399-404.
- [24] Z. Paszenda, J. Tyrlik-Held, J. Marciniak, Application of metallic biomaterials on implants in interventional cardiology, Proceedings of the Scientific Conference ”Materials, Mechanical and Manufacturing Engineering M3E'2000, Gliwice, 2000, 227-232.
- [25] I. De Scheerder, J. Sohier, K. Wang, Metallic surface treatment using electrochemical polishing decreases thrombogenicity and neointimal hyperplasia after coronary stent implantation in a porcine model, Eurpean Heart Journal 18 (1997) 153-156.
- [26] P. Serruys, B. van Hout, H. Bonnier, V. Legrand, E. Garcia, C. Macaya, E. Sousa, W. van der Giessen, Randomised comparison of implantation of heparin-coated stents with angioplasty in selected patients with coronary artery disease (Benestent II), The Lancet 352 (1998) 673-681.
- [27] I. Verweire, E. Schacht, B. Qiang, K. Wang, I. de Scheerder, Evaluation of fluorinated polymers as coronary stent coating, Journal of Materials Science: Materials in Medicine 11 (2000) 207-212.
- [28] W. Walke, J. Filipiak, Experimental and numerical biomechanical analysis of vascular stent, Proceedings of the 13th International Scientific Conference ”Achievements in Mechanical and Materials Engineering” AMME'2005, Gliwice-Wisła, 2005, 699-702.
- [29] W. Walke, J. Filipiak, Experimental and numerical biomechanical analysis of vascular stent, Journal of Materials Processing Technology 164 (2005) 1263-1268.
- [30] W. Walke, J. Marciniak, Optimization of geometrical features of coronary stent with the use of finite elements method, Proceedings of the 12th International Scientific Conference ”Achievements in Mechanical and Materials Engineering” AMME'2003, Gliwice-Zakopane, 2003, 1011-1016.
- [31] W. Walke, Z. Paszenda, J. Tyrlik-Held, Corrosion resistance and chemical composition investigations of passive layer on the implants surface of Co-Cr-W-Ni alloy, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 74-79.
- [32] N. Weber, H. Wendel, G. Ziemer, Hemocompatibility of heparin-coated surfaces and the role of selective plasma protein adsorption, Biomaterials 23 (2002) 429-439.
- [33] H. Zhao, J. van Humbeeck, Electrochemical polishing of 316L stainlesssteel slotted tube coronary stents, Journal of Materials Science Materials in Medicine 13 (2002) 911-916.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0026