Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 28, nr 1 | 79-82
Tytuł artykułu

Innovative approach to uniform imprint of micron and submicron features

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To develop methods for uniform imprint of micron and submicron-scale features. Design/methodology/approach: The first is gas-assisted imprint technique. In use of gas to exert isotropic pressure in hot embossing, uniform embossing throughout the area is achieved. Another approach is the electromagnetic force-assisted imprinting technology, which employs the electromagnetic force to pull the magnetic stamp with submicron-scale structures into a UV-curable resist on the substrate. The liquid photopolymer is then cured by UV-irradiation at room temperature. Furthermore, the ferromagnetic UV-curable material is made of nano-Fe powder and UV-curable polymer. The micron and submicron-scale magnetic features can be fabricated. Findings: Uniform embossing throughout the area is achieved. Under the condition of 180°C, 40kgf/cm² and 90 seconds, high quality and uniformity of micro-optical components can be fabricated. For electromagnetic force-assisted imprinting technology, a large area of sub-micron pattern with a line width of 502nm and a pitch of 1µm can be successfully fabricated under the condition of pressure of 1.6kgf/cm² for 30 seconds and UV curing for 0.5 minute. Using ferromagnetic UV-curable resist, the structures can be successfully fabricated under the pressure of 0.92kgf/cm² with the same UV-curable time. These results indicate good uniformity and controllability on both the gas-assisted hot embossing and electromagnetic force-assisted imprinting for efficient fabrication of micron- or submicron-scale structures. Practical implications: The facilities have been designed, constructed and tested. The effects of processing parameters including the processing temperature, pressure, and time on the replication quality were investigated. Originality/value: There are advantages of high uniformity, low pressure and low temperature for various applications in micron and sub-micron features and other micro-optical components such as gratings and waveguides etc.
Wydawca

Rocznik
Strony
79-82
Opis fizyczny
Bibliogr. 15 poz., il., wykr.
Twórcy
autor
autor
  • Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC, hocheng@pme.nthu.edu.tw
Bibliografia
  • [1] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Nanoimprint lithography, Journal of Vacuum Science and Technology B 14 (1996) 4129-4133.
  • [2] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, L. Zhuang, Sub-10 nm imprint lithography and applications, Journal of Vacuum Science and Technology B 15 (1997) 2897-2904.
  • [3] N. S. Ong, Y. H. Koh, Y. Q. Fu, Microlens array produced using hot embossing process, Microelectronic Engineering 60 (2002) 365-379.
  • [4] Y. Zhao, T. Cui, Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique, Journal of Micromechanics and Microengineering 13 (2003) 430-435.
  • [5] K. B. Yoon, C. G. Choi, S.-P. Han, Fabrication of Multimode Polymeric Waveguides by Hot Embossing Lithography, Japanese Journal of Applied Physics 43 (2004) 3450-3451.
  • [6] T. Bailey, B. Smith, B. J. Choi, M. Colburn, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willsona, Step and flash imprint lithography, Defect analysis, Journal of Vacuum Science and Technology B 19 (2001) 2806-2810.
  • [7] B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, H. Kurz, Large scale ultraviolet-based nanoimprint lithography, Journal of Vacuum Science and Technology B 21 (2003) 2760-2764.
  • [8] U. Plachetka, M. Bender, A. Fuchs, M. Otto, B. Vratzov, B. Vratzov, T. Gilnsner, F. Lindner, H. Kurz, Wafer scale patterning by soft UV-Nanoimprint Lithography, Microe-lectronic Engineering 73-74 (2004) 167-171.
  • [9] Y. Xia, G. M. Whitesides, Soft Lithography, Annual Review of Materials Science 28 (1998) 153-184.
  • [10] H. D. Inerowicz, S. Howell, F. E. Regnier, R. Reifenberger, Multiprotein Immunoassay Arrays Fabricated by Microcontact Printing, Langmuir 18 (2002) 5263-5268.
  • [11] K. E. Paul, M. Prentiss, G. M. Whitesides, Patterning spherical surfaces at the two-hundred-nanometer scale using soft lithography, Advanced Functional Materials 13 (2003) 259-263.
  • [12] W. M. Choi, O. O. Park, The fabrication of submicron patterns on curved substrates using a polydimethylsiloxane film mould, Nanotechnology 15 (2004) 1767-1770.
  • [13] W. M. Choi, O. O. Park, A soft-imprint technique for submicron-scale patterns using a PDMS mold, Microelectronic Engineering 73-74 (2004) 178-183.
  • [14] B. Heidari, I. Maximov, and L. Montelius, Nanoimprint lithography at the 6 in. wafer scale, Journal of Vacuum Science and Technology B 18 (2000) 3557-3560.
  • [15] H. Hocheng, T. T. Wen, S. Y. Yang, Replication of microlens arrays by gas-assisted hot embossing, Materials and Manufacturing Processes V23 (2008).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0003-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.