Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The purpose of the paper is to show and compare of modern method composite materials with aluminium alloy matrix reinforced by Al2O3 particles manufacturing. Design/methodology/approach: Material for investigation was manufactured by two methods: powder metallurgy (consolidation, pressing, hot extrusion of powder mixtures of aluminium EN AW-AlCu4Mg1(A) and ceramic particles Al2O3) and pressure infiltration of porous performs by liquid alloy EN AC AlSi12 (performs were prepared by sintering of Al2O3 powder with addition of pores forming agent-carbon fibers). Findings: The received results show the possibility of obtaining the new composite materials with required structure joining positive properties composite materials components. Practical implications: Tested composite materials can be applicate among the others in automotive industry but it requires additional researches. Originality/value: Worked out technologies of composite materials manufacturing can be used in the production of small elements near net shape and locally reinforced elements.
Rocznik
Tom
Strony
99-102
Opis fizyczny
Bibliogr. 22 poz., il., tab.
Twórcy
autor
autor
autor
autor
- Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
- [1] L. A. Dobrzański, A. Włodarczyk-Fligier, M. Adamiak, Properties and corrosion resistance of PM composite materials based on EN AW-Al Cu4Mg1(A) aluminum alloy reinforced with the Ti(C,N) particles, Proceedings of 11th International Scientific Conference on the Contemporary Achievements in Mechanics, Manufacturing and Materials Science CAM3S'2005, Gliwice-Zakopane, 2005, (CD-ROM).
- [2] L. A. Dobrzański, A. Włodarczyk, M. Adamiak, The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles, Journal of Materials Processing Technology 162-163 (2005) 27-32.
- [3] G. Mrówka-Nowotnik, J. Sieniawski, M. Wierzbińska, Analysis of intermetallic particles in AlSi1MgMn aluminium alloy, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 155-158.
- [4] A. Włodarczyk-Fligier, L. A. Dobrzański, M. Adamiak, Influence of heat treatment on properties and corrosion resistance of Al-composite, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 55-58.
- [5] L. A. Dobrzański, A. Włodarczyk, M. Adamiak, Composite materiale based on EN AW-Al Cu4Mg1(A) aluminium alloy reinforced with the Ti(C,N) ceramic particles, Materials Science Forum 530-531 (2006) 243-248.
- [6] A. Dolata-Grosz, J. Wieczorek, Tribological properties of hybrid composites containing two carbide phases, Archives of Materials Science and Engineering 28/3 (2007) 149-155.
- [7] L. A. Dobrzański, M. Kremzer, A. J. Nowak, A. Nagel, Composite materials based on porous ceramic perform infiltrated by aluminium alloy, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 95-98.
- [8] L. A. Dobrzański, M. Kremzer, A. Nagel, Aluminium EN AC-AlSi12 alloy matrix composite materials reinforced by Al2O3 porous performs, Archives of Material Science and Engineering 28/10 (2007) 593-596.
- [9] V. M. Kevorkijan, The reactive infiltration of porous ceramic media by a molten aluminium alloy, Composites Science and Technology 59 (1999) 683-686.
- [10] W. S. Sheng, S. J. Lin, Ni-coated SiCp reinforced aluminum composites processed by vacuum infiltration, Materials Research Bulletin 31/12 (1996) 1437-1447.
- [11] G. W. Han, D. Feng, M. Yin, W. J. Ye, Ceramic/aluminium co-continuous composite synthesized by reaction accelerated melt infiltration, Materials Science and Engineering A225 (1997) 204-207.
- [12] A. Elwahed, M. Assar, Fabrication of metal matrix composite by infiltration process-part 2: experimental study, Journal of Materials Processing Technology 86 (1999) 152-158.
- [13] N. Nagendra, B. S. Rao, V. Jayaram, Microstructures and properties of Al2O3/Al-AlN composites by pressurless infiltration of Al-alloys, Materials Science and Engineering A269 (1999) 26-37.
- [14] M. Szafran, G. Rokicki, W. Lipiec, K. Konopka, K. Kurzydłowski, Porous ceramic infiltrated by metals and polymers, Composites 2 (2002) 313-316 (in Polish).
- [15] J. Sobczak, Metal Composites, Cracow-Warsaw, 2001 (in Polish).
- [16] A. Mattern, B. Huchler, D. Staudenecker, R. Oberacker, A. Nagel, M. J. Hofmann, Preparation of interpenetrating ceramic-metal composites, Journal of the European Ceramic Society 24 (2004) 3399-3408.
- [17] G. G. Kang, Y. H. Seo, The influence of fabrication parameters on the deformation behaviour of the preform of metal-matrix composites during the squeeze-casting processes, Journal of Materials Processing Technology 61 (1996) 241-249.
- [18] K. Naplocha, A. Janus, J. W. Kaczmar, Z. Samsonowicz, Technology and mechanical properties of ceramic preforms for composite materials, Journal of Materials Processing Technology 106 (2000) 119-122.
- [19] L. M. Peng, J. W. Cao, K. Noda, K. S. Han, Mechanical properties of ceramic-metal composites by pressure infiltration of metal into porous ceramics, Materials Science and Engineering A374 (2004) 1-9.
- [20] M. P. Dariel, L. Levin, N. Frage, Graded ceramic preforms: various processing approaches, Materials Chemistry and Physics 67 (2001) 192-198.
- [21] N. Altinkok, A. Demir, I. Ozsert, Processing of Al2O3/SiCceramic cake preforms and their liquid metal infiltration, Composites 34 (2003) 577-582.
- [22] PN-EN 573-3, Aluminium and aluminium alloys-Chemical compositions and plastic formed product types, 1998.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0002-0080