Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 28, nr 5 | 269-272
Tytuł artykułu

Corrosion resistance of NiTi alloy in simulated body fluids

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Corrosion resistance of an implant alloy is a very important determinant of its biocompatibility. The nature of an environment and surface treatments have a significant influence on corrosion. Most of the knowledge on the corrosion behavior of NiTi is from studies of "standard" corrosion tests. In fact, the knowledge of the corrosion behavior of NiTi inside the body is very limited. The main aim of the research was evaluation of corrosion resistance of NiTi alloy in various simulated body fluids. Design/methodology/approach: The evaluation of the electrochemical behavior of NiTi alloy was realized by recording of anodic polarization curves with the use of the potentiodynamic method. The tests were carried out for differently modified surfaces in diverse simulated body fluids. Findings: Surface condition of a metallic biomaterial determines its corrosion resistance. In the course of the work the good corrosion resistance of all the tested samples (with different surface conditions) was observed. Research limitations/implications: The obtained results are the basis for the optimization of physicochemical properties of the NiTi alloy. The future research should be focused on selected specific implants specially with respect to their application features. Practical implications: On the basis of the obtained results it can be stated that the suggested surface treatment can be applicable for NiTi alloys due to the increase of the corrosion resistance. Originality/value: The paper presents the influence of various methods of the surface treatment on corrosion resistance of the NiTi alloy. The suggested surface treatment methods can be applied to implants intended for diverse medical applications, especially in cardiology and urology.
Wydawca

Rocznik
Strony
269-272
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, marcin.kaczmarek@polsl.pl
Bibliografia
  • [1] Z. Paszenda, J. Tyrlik-Held, J. Marciniak, A. Włodarczyk, Corrosion resistance of Cr-Ni-Mo steel intended for implants used in operative cardiology, Proceedings of the 9th International Scientific Conference „Achievements in Mechanical and Materials Engineering 2000”, Gliwice-Sopot-Gdańsk, 2000, 425-428.
  • [2] J. Szewczenko, J. Marciniak, Corrosion of Cr-Ni-Mo steel implants electrically stimulated, Journal of Materials Processing Technology 175 (2006) 404-410.
  • [3] W. Walke, Z. Paszenda, J. Tyrlik-Held, Corrosion resistance and chemical composition investigations of passive layer on the implants surface of Co-Cr-W-Ni alloy, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 74-79.
  • [4] W. Chrzanowski, Corrosion bahavior of Ti6Al7Nb alloy after different surface treatments, Journal of Achievements in Material and Manufacturing Engineering 18 (2006) 67-70.
  • [5] W. Kajzer, A. Krauze, W. Walke, J. Marciniak, Corrosion resistance of Cr-Ni-Mo steel in simulated body fluids, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 115-118.
  • [6] E. Krasicka-Cydzik, K. Kowalski, I. Glazowska, Electrochemical formation of bioactive surface layer on titanium, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 147-150.
  • [7] A. Krauze, A. Ziębowicz, J. Marciniak, Corrosion resistance of intramedullary nails used in elastic osteosynthesis of children, Journal of Achievements in Materials and Manufacturing Engineering 13 (2005) 355-358.
  • [8] S. A. Shabalovskaya, Surface, corrosion and biocompatibility aspects of Nitinol as an implant material, Bio-Medical Materials and Engineering 12 (2002) 69-109.
  • [9] F. J. Gil, J. A. Planell: Shape memory alloys for medical applications, Proc Instn Mech Engrs 212, H (1998) 473-488.
  • [10] H. Yang, L. Qian, Z. Zhou, X. Ju, H. Dong, Effect of surface treatment by ceramic conversion on the fretting behavior of NiTi shape memory alloy, Tribology Letters 25 (2007) 215-224.
  • [11] C. L. Chu, C. Y. Chung, P. K. Chu, Surface oxidation of NiTi shape memory alloy in a boiling aqueous solution containing hydrogen peroxide, Materials Science and Engineering A 417 (2006) 104-109.
  • [12] J. Wang, N. Li, G. Rao, E. Han, W. Ke, Stress corrosion cracking of NiTi in artificial saliva, Dental Materials 23 (2007) 133-137.
  • [13] M. H. Wong, F. T. Cheng, G. K. M. Pang, H. C. Man, Characterization of oxide film formed on NiTi by laser oxidation, Materials Science and Engineering A 448 (2007) 97-103.
  • [14] A. Michiardi, C. Aparicio, J. A. Planell, F. J. Gil, Electrochemical behaviour of oxidized NiTi shape memory alloys for biomedical applications, Surface and Coatings Technology 201 (2007) 6484-6488.
  • [15] X. Ju, H. Dong, Plasma surface modification of NiTi shape memory alloy, Surface and Coatings Technology 201 (2006) 1542-1547.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.