Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 28, nr 4 | 231-237
Tytuł artykułu

Behavior of anodic layer in Ringer's solution on Ti6Al4V ELI alloy after bending

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Characterization of the electrochemical behavior of anodized implant rods made of the titanium alloy Ti6Al4V ELI after immersion in air-saturated Ringer's solution was presented in the paper. Design/methodology/approach: The anodized and deformed by bending at angle 20° specimens (dia 6 mm) were characterized electrochemically in two zones: the max tensile (I) and the max. compressive stress (II). Impedance spectra (EIS) and corrosion potential measurements were performed on 1, 6, 10 and 16th day after immersion in Ringer's solution. Findings: Bending caused an apparent decrease of the protective properties of the anodic layer, but the characteristic two-layer anodic film and the values of corrosion potentials were restored due to immersion in Ringer's solution. The regions of the compressive stresses show much stronger tendency to regenerate surface properties. Research limitations/implications: The electrochemical tests in Ringer's solution performed only in static conditions will be followed by fatigue tests in SBF. Practical implications: Results of the work are of great importance for surgical practice in the pre-operative stage of spinal surgery procedures. The explanation of the observed phenomena is proposed. Originality/value: Different stress zones formed on implant alloy during bending were described electrochemically. Results of studies evidenced that changes in the electrochemical behaviour in vitro in Ringer's solution are advantageous with regard to the protective properties of the investigated alloy.
Wydawca

Rocznik
Strony
231-237
Opis fizyczny
Bilbiogr. 23 poz., il., wykr.
Twórcy
Bibliografia
  • [1] K. Yamamoto, Y. Kawaguchi, T. Yasunaga, T. Sato, Cracking behavior of AIP-coated metal nitrides under tensile stress, Surface and Coatings Technology 113 (1999) 227-232.
  • [2] A. Kierzkowska, M. Malinowski, E. Krasicka-Cydzik, Characteristics of anodic layer on Ti6Al4V ELI alloy after bending, Journal of Materials Processing Technology (2007), (in print).
  • [3] E. Krasicka-Cydzik, A. Kierzkowska, The effect of bending on the electrochemical behaviour of Ti6Al4V alloy in vitro, Biomaterials Engineering 37 (2004) 53-56.
  • [4] W. Chrzanowski, J. Szewczenko, J. Tyrlik-Held, J. Marciniak, J. Żak, Influence of the anodic oxidation on the physicochemical properties of the Ti6Al4V ELI alloy, Journal of Materials Processing Technology 162-163 (2005) 163-168.
  • [5] J. R. Goldberg, J. L. Gilbert, The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys, Biomaterials 25 (2004) 851-864.
  • [6] C. Leinenbach, D. Eifler, Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media, Biomaterials 27 (2006) 1200-1208.
  • [7] J. Marciniak, Biomaterials, Silesian University of Technology, 2002, (in Polish).
  • [8] P. Peyre, X. Scherpereel, L. Berthe, Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance, Materials Science Engineering 280 (2000) 294-302.
  • [9] V. Vignal, C. Valot, R. Oltra, M. Verneau, L. Coudreuse, Analogy between the effects of a mechanical and chemical perturbation on the conductivity of passive films, Corrosion Science 44 (2002) 1477-1496.
  • [10] Y. T. Sul, The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant, Biomaterials 24 (2003) 3893-3907.
  • [11] D. V. Shtansky, N. A. Gloushankova, A. N. Sheveiko, M. A. Kharitonova, T. G. Moizhess, E. A. Levashov, F. Rossi, Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications, Biomaterials 26 (2005) 2909-2924.
  • [12] I. C. Lavos-Valereto, S. Wolynec, Electrochemical impedance spectroscopy characterization of passive film formed on implant Ti-6Al-7Nb alloy in Hank`s solution, Journal of Materials Scence: Materials in Medicine 15 (2004) 55-59.
  • [13] C. Leinenbach, C. Fleck, D. Eifler, The cyclic deformation behaviour and fatigue induced damage of the implant alloy TiAl6Nb7 in simulated physiological media, Electrochimica Acta 49 (2004) 4563-4576.
  • [14] D. Krupa, J. Baszkiewicz, J. W. Sobczak, A. Bilinski, A. Barcz, Modifying the properties of titanium surface with the aim of improving its bioactivity and corrosion resistance, Journal of Materials Processing Technology 143-144 (2003) 158-163.
  • [15] R. Kumar, P. Chean, K. A. Khor Spark plasma sintering and in vitro study of ultra-fine HA and ZrO2-HA powders, Journal of Materials Processing Technology 140 (2003) 420-425.
  • [16] A. Kierzkowska, E. Krasicka-Cydzik, M. Jenek, Characteristic surface layer of Ti6Al4V alloy after deformation by bending, Biomaterials Engineering 47-53 (2005) 146-148.
  • [17] W. Grzesik, T. Wanat, Comparative assessment of surface roughness produced by hard machining with mixed ceramic tools including 2D and 3D analysis, Journal of Materials Processing Technology 169 (2005) 364-371.
  • [18] D. Mareci, C. Bocanu, G. Nemtoi, D. Elenei, Electrochemical behaviour of titanium alloys in artificial saliva, Journal of the Serbian Chemical Society 70 (2005) 891-897.
  • [19] E. Kobayashi, T. J. Wang, H. Doi, T. Yoneyama, H. Hamanaka, Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental casting, Journal of Materials Science: Materials in Medicine 9 (1998) 567.
  • [20] E. Krasicka-Cydzik, Formation of thin anodic layers on titanium and its implant alloys in phosphoric acid solutions, Zielona Góra University Press, 2003, (in Polish).
  • [21] M. Metikos-Hukovic, A. Kwokal, J. Piljac, The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution, Biomaterials 24 (2003) 3765.
  • [22] C. H. Quek, K. A. Khor, P. Cheang, Influence of processing parameters in the plasma spraying of hydroxyapatite Ti-6Al-4V composite coatings, Journal of Materials Processing Technology 89-90 (1999) 550-555.
  • [23] E. Krasicka-Cydzik, A. Kierzkowska, I. Głazowska, Effect of bending on anodized Ti6Al4V alloy: II. Behavior in vitro, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 89-92.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.