Warianty tytułu
Konferencja
Thw 17th Conference on Liquid Crystals : Chemistry Physics and Applications ; (17 ; 09.2007 ; Augustów, Poland)
Języki publikacji
Abstrakty
An analysis of consistency of dielectric and optical response methods is carried out for surface stabilized ferroelectric liquid crystals (SSFLC) with chevron geometry. The consistency is found both theoretically and experimentally for weak external electric fields of intermediate frequencies, for which the response of SSFLC is dominated by collective relaxation processes due to azimuthal reorientation of molecules arranging chevron layers. The methods are experimentally shown to lack consistency within very low, relatively low, and high field-frequency ranges. The disagreement appearing at relatively low frequencies is argued to be a consequence of different recording by dielectric and optical techniques the dynamics of zig-zag walls, forming defects in chevron structure.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
281-286
Opis fizyczny
Bibliogr. 16 poz., il., wykr.
Twórcy
autor
autor
autor
autor
- Institute of Molecular Physics, Polish Academy of Sciences, 17 Smoluchowskiego Str., 60-179 Poznań, Poland, jezewski@ifmpan.poznan.pl
Bibliografia
- 1. P. Pierański, E. Guyon, P. Keller, L. Liebert, W. Kuczyński, and P. Pierański, “Optical study of a chiral smecticC under shear”, Mol. Cryst. Liq. Cryst. 38, 275 (1977).
- 2. W. Kuczyński, J. Hoffmann, and J. Małecki, “Investigation of ferroelectric modes in liquid crystals using dielectric and optical methods”, Ferroelectrics 150, 279 (1993).
- 3. L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, New York, Springer, 1996.
- 4. S.T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals, Wiley-VCH, Weinheim, 1999.
- 5. W. Kuczyński, “Electrooptical studies of relaxation processes in ferroelectric liquid crystals”, in Relaxation Phenomena, pp. 422-444, edited by W. Hasse and S. Wróbel, Berlin, Springer-Verlag, 2003.
- 6. T.P. Rieker, N.A. Clark, G.S. Smith, D.S. Parmar, E.B. Sirota, and C.R. Safinya, “Chevron local layer structure in surface-stabilized ferroelectric smectic-C cells”, Phys. Rev. Lett. 59, 2658-2661 (1987).
- 7. N.A. Clark, and T.P. Rieker, “Smectic-C“chevron”, a planar liquid-crystal defect: implications for the surface stabilized ferroelectric liquid crystal geometry”, Phys. Rev. A37, 1053-1056 (1988).
- 8. W. Jeżewski, W. Kuczyński, and J. Hoffmann, “Dielectric versus optical response of chevron ferroelectric liquid crystals”, Liq. Cryst. 34, 1299-1306, (2007).
- 9. L.S. Matkin, H.F. Gleeson, L.J. Baylis, S.J. Watson, N. Bowring, A. Seed, M. Hird, and J.W. Goodby, “Electric field-induced layer deformations in the subphases of an antiferroelectric liquid crystal device”, Appl. Phys. Lett. 77, 340-342 (2000).
- 10. M.B. Hamaneh, H.F. Gleson, and P.L. Taylor, “Theory of layer structure in ferroelectric liquid crystal devices in applied electric fields”, Phys. Rev. E68, 051704-051712 (2003).
- 11. Yu.P. Panarin, Yu.P. Kalmykov, S.T. MacLughadha, H. Xu, and J.K. Vij, “Dielectric response of surface stabilized ferroelectric liquid crystal cells”, Phys. Rev. E50, 4763-4772 (1994).
- 12. W. Jeżewski, W. Kuczyński, and J. Hoffmann, “Dielectric relaxation in chevron surface stabilized ferroelectric liquid crystals”, Phys. Rev. E73, 061702-061712 (2006).
- 13. D. Dardas, W. Kuczyński, and J. Hoffmann, “Measurements of absolute values of electrooptic coefficients in a ferroelectric liquid crystal”, Phase Transit. 79, 213-222 (2006).
- 14. F. Gouda, K. Skarp, and S.T. Lagerwall, “Dielectric studies of the soft mode and Goldstone mode in ferroelectric liquid crystals”, Ferroelectrics 113, 165-206 (1991).
- 15. S. Sarmento, P. Simeao Carvalho, M. Glogarova, M.R. Chaves, H.T. Nguyen, and M.J. Ribeiro, “Dielectric, optical and TSM measurements on semi-perfluoro ferro- and anti-ferro-electric liquid crystals”, Liq. Cryst. 25, 375-385 (1998).
- 16. W. Jeżewski, W. Kuczyński, and J. Hoffmann, “Creep dynamics of structural defects in ferroelectric liquid crystals with chevron geometry”, Phys. Rev. B77, 094011-094015 (2008).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0013-0012