Warianty tytułu
Języki publikacji
Abstrakty
Individual cell recognition is a relevant task to be accomplished when single-ion microbeam irradiations are performed. At INFN-LNL facility cell visualization system is based on a phase-contrast optical microscope, without the use of any cell dye. Unstained cells are seeded in the special designed Petri dish, between two mylar foils, and at present the cell recognition is achieved manually by an expert operator. Nevertheless, this procedure is time consuming and sometimes it could be not practical if the amount of living cells to be irradiated is large. To reduce the time needed to recognize unstained cells on the Petri dish, it has been designed and implemented an automated, parallel algorithm. Overlapping ROIs sliding in steps over the captured grayscale image are firstly pre-classified and potential cell markers for the segmentation are obtained. Segmented objects are additionally classified to categorize cell bodies from other structures considered as sample dirt or background. As a result, cell coordinates are passed to the dedicated CELLView program that controls all the LNL single-ion microbeam irradiation protocol, including the positioning of individual cells in front of the ion beam. Unstained cell recognition system was successfully tested in experimental conditions with two different mylar surfaces. The recognition time and accuracy was acceptable, however, improvements in speed would be useful.
Czasopismo
Rocznik
Tom
Strony
307-319
Opis fizyczny
Bibliogr. 28 poz., il., wykr.
Twórcy
autor
autor
autor
autor
- INFN-Laboratori Nazionali di Legnaro, Viale dell'Universita 2, 35020 Legnaro, Italy, Marcin.Skoczylas@pb.edu.pl
Bibliografia
- [1] S. Gerardi, “A comparative review of the charged particle microbeam facilities”, Radiat. Prot. Dosim. 122, 316-319 (2006).
- [2] S. Gerardi, “Ionizing radiation microbeam facilities for ra-diobiological studies in Europe”, J. Radiat. Res. 50, Suppl. A13-A20 (2009).
- [3] S. Gerardi, G. Galeazzi, and R. Cherubini, “A microcollimated ion beam facility for investigations of the effects of low-dose radiation”, Radiat. Res. 164, 586-590 (2005).
- [4] S. Gerardi and E. Tonini, “CELLView: a software control system for sample movement, single-cell visualization and micropositioning at the LNL horizontal single-ion micro-beam facility”, LNL Annual Report 2002, 65 (2003).
- [5] L. Vincent, “Morphological area openings and closings for rayscale images”, Shape in Picture, NATO Workshop, Drebergen, 1992.
- [6] S. Raman, B. Parvin, C. Maxwell, and M.H. Barcellos-Hoff, “Geometric approach to segmentation and protein localization in cell cultured assays”, in Advances in Visual Computing, G. Bebis et al. (Eds), Vol. 3804, pp. 427-436, Springer, 2005.
- [7] O. Veselov, W. Polak, R. Ugenskiene, K. Lebed, J. Lekki, Z. Stachura, and J. Styczeń, “Development of the IFJ single ion hit facility for cells irradiation”, Radiat. Prot. Dosim. 122, 316-319 (2006).
- [8] M. Tscherepanow, F. Zöllner, and F. Kummert, “Classification of segmented regions in brightfield microscope images”, Int. C. Patt. Recog. 18, 972-975 (2006).
- [9] A. Zizzari, B. Michaelis, and G. Gademann, “Optimal feature functions on co-occurrence matrix and applications in tumor recognition”, Appl. Sim. Model., 2002.
- [10] F. Tomita and S. Tsuji, Computer Analysis of Visual Textures, Kluwer Academic Publishers, Norwell, MA, USA, 1990.
- [11] R.O. Duda and P.E. Hart, “Use of the Hough transformation to detect lines and curves in pictures”, Commun. ACM 15, 11-15 (1972).
- [12] S. Beucher and F. Meyer, Mathematical Morphology in Image Processing, Chapter 12, pp. 433-481, Marcel Dekker, 1993.
- [13] G. Voronoi, “Nouvelles applications des paramètres continus à la théorie des formes quadratiques”, J. Reine Angew. Math., 133, 97-178 (1907).
- [14] M. Hall, E. Frank, G. Holmes, Geoffrey, B. Pfahringer, P. Reutemann, and I. Witten, “The WEKA data mining software: an update”, SIGKDD Explor. Newsl. 11, 10-18 (2009).
- [15] R. Philips, L. Watson, R. Wynne, and C. Blinn, “Feature reduction using singular value decomposition for the IGSCR hybrid classifier”, Proc. Int. Conf. on Scientific Computing, 2007.
- [16] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications”, Neural Networks 13, 411-430 (2000).
- [17] B. Ahmed, T. Rasheed, Y. Lee, S. Lee, and T. Kim, “Facial image retrieval through compound queries using constrained independent component analysis”, Proc. Int C. Tools Art. 1, 544-548 (2007).
- [18] D.E. Rumelhart, E.E. Hinton, and R.J. Williams, “Learning representations by back-propagating errors”, Nature 323, 533 (1986).
- [19] A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and D.B. Rosen, “Fuzzy ARTMAP: A neural network architecture for incremental learning of analog multidimensional maps”, IEEE T. Neural Networ. 3, 698-713 (1992).
- [20] M. Taghi, V. Baghmisheh, and N. Pavešić, “A fast simplified fuzzy ARTMAP network”, Neural Process. Lett. 17, 273-316 (2003).
- [21] V. Vapnik, S. Golowich, and A. Smola, “Support vector method for function approximation, regression estimation, and signal processing”, Neu. Inf. Pro. 9, (1997).
- [22] L. Zhang, W. Zhou, and L. Jiao, “Wavelet support vector machine”, IEEE T. Syst. Man Cy. B 34, 34-39 (2004).
- [23] N. Landwehr, M. Hall, and E. Frank, “Logistic model trees”, Mach. Learn. 59, 161-205 (2005).
- [24] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK's User's Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
- [25] C.C. Chang and C.J. Lin, LIBSVM: a Library for Support Vector Machines, 2001.
- [26] Matlab. www.mathworks.com.
- [27] J.C. Platt, Fast Training of Support Vector Machines using Sequential Minimal Optimization, pp. 185-208, Cambridge, MA, 1999.
- [28] M. Skoczylas, K. Bandurski, R. Cherubini, V. De Nadal, and S. Gerardi, “On-line results of the INFN-LNL automated unstained cell recognition system for single-cell irradiations”, LNL Annual Report 2009, (2009).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0022-0028