Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 18, No. 4 | 467-473
Tytuł artykułu

Photoluminescence and photoconductive characteristics of hydrothermally synthesized ZnO nanoparticles

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, ZnO nanoparticles (NPs) with particle size of 20-50 nm have been synthesized by hydrothermal method. UV-visible absorption spectra of ZnO nanoparticles show absorption edge at 372 nm, which is blue-shifted as compared to bulk ZnO. Photoluminescence (PL) and photoconductive device characteristics, including field response, light intensity response, rise and decay time response, and spectral response have been studied systematically. The photoluminescence spectra of these ZnO nanoparticles exhibited different emission peaks at 396 nm, 416 nm, 445 nm, 481 nm, and 524 nm. The photoconductivity spectra of ZnO nanoparticles are studied in the UV-visible spectral region (366–691 nm). In spectral response curve of ZnO NPs, the wavelength dependence of the photocurrent is very close to the absorption and photoluminescence spectra. The photo generated current, Ipc = (Itotal - Idark) and dark current Idc varies according to the power law with the applied field IpcαVr and with the intensity of illumination Ipcα Vr, due to the defect related mechanism including both recombination centers and traps. The ZnO NPs is found to have deep trap of 0.96 eV, very close to green band emission. The photo and dark conductivities of ZnO NPs have been measured using thick film of powder without any binder.
Słowa kluczowe
Wydawca

Rocznik
Strony
467-473
Opis fizyczny
Bibliogr. 40 poz., il., wykr.
Twórcy
autor
Bibliografia
  • [1] Y. Wang and N. Herron: Quantum size effects on the exciton energy of CdS clusters. Phys. Rev. B42, 7253-7255, 1990.
  • [2] J. Nanda, B. A. Kuruvilla and D. D. Sarma: Photoelectron spectroscopic study of CdS nanocrystallites. Phys. Rev. B59, 7473-7479, 1999.
  • [3] L. E. Brus: Electron-electron and electron-hole interactions in small semiconductor crystallites - the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403-4409, 1984.
  • [4] S. Sapra and D. D. Sarma: Evolution of the electronic structure with size in II-VI semiconductor nanocrystals. Phys. Rev. B69, 125304, 2004.
  • [5] R. H. Bube: Photoconductivity of Solid. Wiley, Newyork, 1960.
  • [6] T. K. Gupta: Application of zinc oxide varistors. J. Am. Ceram. Soc. 73, 1817-1839, 1990.
  • [7] D. C. Look: Recent advances in ZnO materials and devices. Mater. Sci. Eng. B80, 383-387, 2001.
  • [8] Y. Natsume, H. Sakata, T. Hirayama and H. Yanagida: Low-temperature conductivity of ZnO films prepared by chemical vapour deposition. J. Appl. Phys. 72, 4203-4207, 1992.
  • [9] T. Okamura, Y. Seki, S. Nagakary and H. Okushi: Preparation of n-ZnO/p-Si heterojunction by sol-gel process. Jpn. J. Appl. Phys. 31, L762-L764, 1992.
  • [10] J. Aranovich, A. Ortiz and R. H. Bube: Optical and electrical properties of ZnO prepared by spray pyrolysis for solar cell applications. J. Vac. Sci. Technol. 16, 994, 1979.
  • [11] R. S. Yadav and A. C. Pandey: Small angle X-ray scattering and photoluminescence study of ZnO nanoparticles synthesized by hydrothermal process. J. Exp. Nanosci. 2, 177-182, 2007.
  • [12] R. S. Yadav, A. C. Pandey and S. S. Sanjay: ZnO porous structures synthesized by CTAB-assisted hydrothermal process. Struct. Chem. 18, 1001, 2007.
  • [13] R. S. Yadav, R. Mishra and A. C. Pandey: Particle size distribution study by small-angle X-ray scattering technique and photoluminescence property of ZnO nanoparticles. J. Exp. Nanosci. 4, 139, 2009.
  • [14] F. H. Nicoll: Ultraviolet ZnO laser pumped by an electron beam. Appl. Phys. Lett. 9, 13, 1966.
  • [15] S. Mridha and D. Basak: Thickness dependent photoconducting properties of ZnO films. Chem. Phys. Lett. 427, 62-66, 2006.
  • [16] M. J. H. Henseler, W. C. T. Lee, P. Miller, S. M. Durbin and R. J. Reeves: Optical and photoelectrical properties of ZnO thin films and the effects of annealing. J. Cryst. Growth 287, 48-53, 2006.
  • [17] P. Sharma, K. Sreenivas and K. V. Rao: Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. J. Appl. Phys. 93, 3963-3970, 2003.
  • [18] O. Harnack, C. Pacholski, H. Weller, A. Yasuda and J. M. Wessels: Rectifying behavior of electrically aligned ZnO nanorods. Nanoletters 3, 1097-1101, 2003.
  • [19] H. Kind, H. Yan, B. Messer, M. Law and P. Yang: Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158-160, 2002.
  • [20] J. B. Baxter and C. A. Schmuttenmaer: Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B110, 25229-25239, 2006.
  • [21] S. Devi and S. G. Prakash: Photoconductivity of (ZnO-CdO) mixed lattices. Natl. Acad. Sci. Lett. (India) 13, 35, 1990.
  • [22] R. K. Srivastava and S. G. Prakash: Photoconductivity and dark conductivity of CdS-Se mixed lattice. Natl. Acad. Sci. Lett. 30, 11-12, 2007.
  • [23] J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao, and C. H. Yan: Control of ZnO morphology via a simple solution route. Chem. Mater. 14, 4172-4177, 2002.
  • [24] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983, 1996.
  • [25] X. M. Fan, J. S. Lian, L. Zhao and Y. Liu: Single violet luminescence emitted from ZnO films obtained by oxidation of Zn film on quartz glass. Appl. Surf. Sci. 252, 420-424, 2005.
  • [26] T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima and Y. Horikoshi: Intrinsic defects in ZnO films grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 43, 2602-2606, 2004.
  • [27] J. Wang and L. Gao: Synthesis of uniform rod-like, multi-pod-like ZnO whiskers and their photoluminescence properties. J. Cryst. Growth 262, 290-294, 2004.
  • [28] R. Dingle: Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc-oxide. Phys. Rev. Lett. 23, 579-581, 1969.
  • [29] Y. W. Heo, D. P. Norton and S. J. Pearton: Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy. J. Appl. Phys. 98, 073502, 2005.
  • [30] T. E. Murphy, K. Moazzami and J. D. Phillips: Trap-related photoconductivity in ZnO epilayers. J. Electron. Mater. 35, 543-549, 2006.
  • [31] B. Lin, Z. Fu and Y. Jia: Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943-945, 2001.
  • [32] F. Wen, W. Li, J. Moon and J. Kima: Hydrothermal synthesis of ZnO:Zn with green emission at low temperature with reduction process. Solid State Commun. 135, 34-37, 2005.
  • [33] R. W. Smith and A. Rose: Space-charge-limited currents in single crystals of cadmium sulfide. Phys. Rev. 97, 1531-1537, 1955.
  • [34] A. Rose, R.G.A Review 12, 362, 1951.
  • [35] S. Bhushan and D. Diwan: Photoconductivity of ZnO phosphors. Natl. Acad. Sci. Lett. 7, 12, 1984.
  • [36] H. Meier: Organic Semiconductors: Dark and Photoconductivity of Organic Solids, Weinheim, Chemie GmbH, 1974.
  • [37] P. K. C. Pillai, N. Schroff, N. N. Kumar, and A. K. Tripathi: Photoconductivity and dark-conductivity studies of CdS1-xSex(Cu) sintered layers. Phys. Rev. B32, 8228-8233, 1985.
  • [38] R. H. Bube: Photoconductivity of Solids. John Wiley, New York, 404, 1967.
  • [39] K. Moazzami, T. E. Murphy, S. P. Phillips, M. C. K. Cheung and A. N. Cartwright: Sub-bandgap photoconductivity in ZnO epilayers and extraction of trap density spectra. Semicond. Sci. Tech. 21, 717-723, 2006.
  • [40] J. Carry, H. Carrere, M. L. Kahn, B. Chaudret, X. Marie and M. Respaud: Photoconductivity of self-assembled ZnO nanoparticles synthesized by organometallic chemistry. Semicond. Sci. Tech. 23, 025003, 2008.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.