Czasopismo
2010
|
Vol. 18, No. 4
|
446-457
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We characterize the sensitivity of imaging properties of a layered silver-TiO₂ flat lens to fabrication inaccuracies. The lens is designed for approximately diffraction-free imaging with subwavelength resolution at distances in the order of a wavelength. Its operation may be attributed to self-collimation with a secondary role of Fabry-Perot resonant transmission, even though the first order effective medium description of the structure is inaccurate. Super-resolution is maintained for a broad range of overall thicknesses and the total thickness of the multilayer is limited by absorption. The tolerance analysis indicates that the resolution and transmission efficiency are highly sensitive to small changes of layer thicknesses.
Czasopismo
Rocznik
Tom
Strony
446-457
Opis fizyczny
Bibliogr. 39 poz., il., wykr.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
- Faculty of Physics, University of Warsaw, 7 Pasteura Str., 02-093 Warsaw, Poland, rafal.kotynski@fuw.edu.pl
Bibliografia
- [1] J. B. Pendry: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966-3969, 2000.
- [2] N. Fang, H. Lee, C. Sun and X. Zhang: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534-537, 2005.
- [3] D. O. S. Melville and R. J. Blaikie: Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127-2134, 2005.
- [4] Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun and X. Zhang: Far-field optical superlens. Nano Lett. 7, 403-408, 2007.
- [5] P. Wróbel, J. Pniewski, T. J. Antosiewicz and T. Szoplik: Focusing radially polarized light by concentrically corrugated silver film without a hole. Phys. Rev. Lett. 102, 183902, 2009.
- [6] Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun and X. Zhang: Experimental studies of far-field superlens for sub-diffractional optical imaging. Opt. Express 15, 6947-6954, 2007.
- [7] Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun and X. Zhang: Tuning the far-field superlens: from UV to visible. Opt. Express 15, 7095-7102, 2007.
- [8] E. A. Ray, M. J. Hampton and R. Lopez: Simple demonstration of visible evanescent-wave enhancement with far-field detection. Opt. Lett. 34, 2048-2050, 2009.
- [9] B. Wood, J. B. Pendry and D. P. Tsai: Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B74, 115116, 2006.
- [10] D. O. S. Melville and R. J. Blaikie: Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography. J. Opt. Soc. Am. B23, 461-467, 2006.
- [11] M. Scalora, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler and J. Haus: Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks. Opt. Express 15, 508-523, 2007.
- [12] X. Li, S. He and Y. Jin: Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies. Phys. Rev. B75, 045103, 2007.
- [13] D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. DOrazio, J. Haus, M. J. Bloemer and M. Scalora: Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-IR ranges. Phys. Rev. A77, 033848, 2008.
- [14] M. Conforti, M. Guasoni and C. De Angelis: Subwavelength diffraction management. Opt. Lett. 33, 2662-2664, 2008.
- [15] C. P. Moore, M. D. Arnold, P. J. Bones and R. J. Blaikie: Analysis and comparison of simulation techniques for silver superlenses. Proc. Int. Conf. Nanoscience and Nanotechnology, ICONN 2008, 210-213, 2008.
- [16] C. P. Moore, M. D. Arnold, P. J. Bones and R. J. Blaikie: Image fidelity for single-layer and multi-layer silver superlenses. J. Opt. Soc. Am. A25, 911-918, 2008.
- [17] C. P. Moore, R. J. Blaikie and M. D. Arnold: An improved transfer-matrix model for optical superlenses. Opt. Express 17, 14260-14269, 2009.
- [18] R. Kotynski and T. Stefaniuk: Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes. J. Opt. A-Pure Appl. Op. 11, 015001, 2009.
- [19] N. Mattiucci, G. D'Aguanno, M. Scalora, M. J. Bloemer and C. Sibilia: Transmission function properties for multi-layered structures: Application to superresolution. Opt. Express 17, 17517-17529, 2009.
- [20] Q. M. Quan, S. L. Zhu and R. P. Wang: Refraction in the fixed direction at the surface of dielectric/silver superlattice. Phys. Lett. A359, 547-549, 2006.
- [21] X. Li and F. Zhuang: Multilayered structures with high subwavelength resolution based on the metal-dielectric composites. J. Opt. Soc. Am. A26, 2521-2525, 2009.
- [22] R. Kotyński and T. Stefaniuk: Multiscale analysis of subwavelength imaging with metal-dielectric multilayers. Opt. Lett. 35, 1133-1135, 2010.
- [23] R. Kotyński, T. Stefaniuk and A. Pastuszczak: Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers. ArXiv:1002.0658. (submitted to J. Appl. Phys. A, 2010.
- [24] P. A. Belov, C. Simovski and P. Ikonen: Canalization of subwavelength images by electro-magnetic crystals. Phys. Rev. B71, 193105, 2005.
- [25] P. A. Belov and Y. Hao: Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B73, 113110, 2006.
- [26] M. A. Vincenti, A. D'Orazio, M. G. Cappeddu, N. Akozbek, M. J. Bloemer and M. Scalora: Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies. J. Appl. Phys. 105, 103103, 2009.
- [27] J. W. Goodman: Introduction to Fourier Optics. Roberts & Co Publ., 3rd ed., 2005.
- [28] B. Saleh and M. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc, 2nd ed., 2007.
- [29] R. Kotyński: Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers. Opto-Electron. Rev. 18, 366-375, 2010, in press, arXiv 1006.3669.
- [30] A. Taflove and S. C. Hagness: Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artec House Inc., Boston, 2nd ed., 2000.
- [31] A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson and G. Burr: Improving accuracy by subpixel smoothing in FDTD. Opt. Lett. 31, 2972-2974, 2006.
- [32] http://www.photond.com/products/crystalwave.htm an overview of the computation engine implemented in the Crystal Wave tool by the Photon Design Ltd., Oxford.
- [33] H. V. Baghdasaryan and T. M. Knyazyan: Problem of plane EM wave self-action in multilayer structure: an exact solution. Opt. Quant. Electron. 31, 1059-1072, 1999.
- [34] H. V. Baghdasaryan, T. M. Knyazyan, T. H. Baghdasaryan and G. G. Eyramjyan: Development of the method of single expression (MSE) for analysis of plane wave oblique incidence on multilayer structures having complex permittivity and permeability. Proc. ICTON'2008, Vol. 1, 250-254, 2008.
- [35] H. V. Baghdasaryan, T. M. Knyazyan and G. G. Eyramjyan: Electrodynamical analysis of a transmittive metal-dielectric microstructure by the method of single expression. Proc. European Microwave Association 4, 76-81, 2008.
- [36] H. V. Baghdasaryan and T. M. Knyazyan: Modelling of strongly nonlinear sinusoidal Bragg gratings by the method of single expression. Opt. Quant. Electron. 32, 869-883, 2000.
- [37] P. Markos and C. M. Soukoulis: Wave Propagation. From Electrons to Photonic Crystals and Left-handed Materials. Princeton University Press, Princeton and Oxford, 2008.
- [38] O. Duyar, F. Placido and H. Z. Durusoy: Optimization of TiO2 films prepared by reactive electron beam evaporation of Ti3O5. J. Phys. D. Appl. Phys. 41, 095307, 2008.
- [39] P. Johnson and R. Christy: Optical constants of the noble metals. Phys. Rev. B6, 4370-4379, 1972.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0060