Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 18, No. 4 | 438-445
Tytuł artykułu

Absorption loss influence on optical characteristics of multilayer distributed Bragg reflector : wavelength-scale analysis by the method of single expression

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrodynamical model of a classical distributed Bragg reflector (DBR) consisting of alternating quarter-wave layers of high and low permittivity is considered at the plane wave normal incidence. Reflective characteristics of DBR possessing absorption loss in constituting layers are analysed via correct wavelength-scale boundary problem solution by the method of single expression (MSE). Analysis of optical field and power flow density distributions within the lossy DBR structures explained the peculiarities of their reflective characteristics. Optimal configurations of lossless and lossy DBRs are revealed. Specific DBR structures possessing full transparency at definite number of layers are also analysed.
Wydawca

Rocznik
Strony
438-445
Opis fizyczny
Bibliogr. 39 poz., wykr.
Twórcy
autor
  • Fiber Optics Communication Laboratory, State Engineering University of Armenia, 105 Terian Str., 0009 Yerevan, Armenia, hovik@seua.am
Bibliografia
  • [1] K. Iga: Surface emitting laser - its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quant. 6, 1201-1215, 2000.
  • [2] K. D. Choquette and H. Q. Hou: Vertical-cavity surface emitting lasers: moving from research to manufacturing. IEEE Proc. 85, 1730-1739, 1997.
  • [3] E. F. Schubert, N. E. J. Hunt, J. M. Roger, M. Micovic and D. L. Miller: Temperature and modulation characteristics of resonant-cavity light-emitting diodes. J. Lightwave Technol. 14, 1721-1729, 1996.
  • [4] D. Delbeke, R. Bockstaele, P. Bienstman and R. Baets: High-efficiency semiconductor resonant-cavity light-emitting diodes: A review. IEEE J. Sel. Top. Quant. 8, 189-206, 2002.
  • [5] J. P. Kim and A. M. Sarangan: Simulation of resonant cavity enhanced (RCE) photodetectors using the finite difference time domain (FDTD) method. Opt. Express 12, 4829-4834, 2004.
  • [6] T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon and S. C. Binari: A surface-normal coupled-quantum-well modulator at 1.55 μm. IEEE Photonic. Tech. L. 16, 2036-2038, 2004.
  • [7] H. Liu, Ch. Ch. Lin and J. S. Harris, Jr.: High.speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects. Opt. Eng. 40, 1186-1191, 2001.
  • [8] P. Yeh, Optical Waves in Layered Media, N.Y.: Willey & Sons, 1988.
  • [9] A. V. Vinogradov and Ya. Zeldovich: X.ray and far UV multilayer mirrors: Principles and possibilities. Appl. Optics 16, 89-93, 1977.
  • [10] P. Bienstman, R. Baets, J. Vukusic, A. Larsson, S. A. Riyopoulos, J. F. P. Seurin, and S. L. Chuang: Comparison of optical VCSEL models on the simulation of oxide-confined devices. IEEE J. Quantum Elect. 37, 1618-1631, 2001.
  • [11] M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford, 1975.
  • [12] O. S. Heavens, Optical Properties of Thin Solid Films, New York, Dover Publications Inc., 1991.
  • [13] H. A. Macleod, Thin-Film Optical Filters, Bristol, Institute of Physics Publishing, 2001.
  • [14] D. I. Babic and S. W. Corzine: Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quantum Elect. 28, 514-524, 1992.
  • [15] O. Arnon and P. Baumeister: Electric field distribution and the reduction of laser damage in multilayers. Appl. Optics 19, 1853-1855, 1980.
  • [16] K. Ohta and H. Ishida: Matrix formalism for calculation of electric field intensity of light in stratified multilayered films. Appl. Optics 29, 1952-1959, 1990.
  • [17] H. V. Baghdasaryan and T. M. Knyazyan: Problem of plane EM wave self.action in multilayer structure: an exact solution. Opt. Quant. Electron. 31, 1059-172, 1999.
  • [18] A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons. Inc., 1984.
  • [19] B. G. Kim and E. Garmire: Comparison between the matrix method and the coupled-wave method in the analysis of Bragg reflector structures. J. Opt. Soc. Am. A9, 132-136, 1992.
  • [20] N. Matuschek, F. X. Kartner and U. Keller: Exact coupled-mode theories for multilayer interference coatings with arbitrary strong index modulation. IEEE J. Quantum Elect. 33, 295-302, 1997.
  • [21] M. C. Parker, R. J. Mears and S. D. Walker: A Fourier transform theory for photon localization and evanescence in photonic bandgap structures. J. Opt. A-Pure Appl. Opt. 3, S171-S183, 2001.
  • [22] F. De Leonardis, V. M. N. Passaro and F. Magno: Improved simulation of VCSEL distributed Bragg reflectors. J. Comput. Electron. 6, 289-292, 2007.
  • [23] S. W. Corzine, R. H. Yan and L. A. Coldren: A Tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks. IEEE J. Quantum Elect. 27, 2086-2090, 1991.
  • [24] A. Taflov and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, 2000.
  • [25] H. V. Baghdasaryan: Method of backward calculation. Photonic Devices for Telecommunications: How to Model and Measure, pp. 56-65, edited by G. Guekos, Springer-Verlag, 1999.
  • [26] H. V. Baghdasaryan and T. M. Knyazyan: Method of single expression - advanced powerful tool for computer modelling of wavelength scale nonuniform frequency-selective 1D photonic structures. ICTON 2002, Conf. Proc., Poland, Th. C.5, 157-162, 2002.
  • [27] H. V. Baghdasaryan and T. M. Knyazyan: Method of single expression - an exact solution for wavelength scale 1D photonic structures' computer modelling. Proc. SPIE 5260, 141-148, 2003.
  • [28] H. V. Baghdasaryan and T. M. Knyazyan: Modelling of strongly nonlinear sinusoidal Bragg gratings by the method of single expression. Opt. Quantum Elect. 32, 869-883, 2000.
  • [29] H. V. Baghdasaryan and T. M. Knyazyan: Simulation of amplifying phase-shifted Bragg gratings by the method of single expression. Opt. Quantum Elect. 35, 493-506, 2003.
  • [30] M. Midrio: Shooting technique for the computation of plane-wave reflection and transmission through one-dimensional nonlinear inhomogeneous dielectric structures. J. Opt. Soc. Am. B18, 1866-1871, 2001.
  • [31] H. M. Liddell, Computer-Aided Techniques for the Design of Multilayer Filters, Adam Hilger Ltd., Bristol, 1981.
  • [32] J. H. Apfel: Optical coating design with reduced electric field intensity. Appl. Opt. 16, 1880-1885, 1977.
  • [33] G. B. Morrison and D. T. Cassidy: A probability-amplitude transfer-matrix method for calculating the distribution of light in semiconductor lasers. IEEE J. Quantum Elect. 39, 431-437, 2003.
  • [34] H. V. Baghdasaryan, T. M. Knyazyan and R. I. Simonyan: Optical characteristics of distributed Bragg reflectors by taking into account material loss in layers. ICTON 2005, Conf. Proc., Barcelona, 347-350, 2005.
  • [35] H. Puschner: Heating with Microwaves. Fundamentals, Components and Circuit Technique, Philips Technical Library, 1966.
  • [36] L. D. Landau and E. M. Lifshitz: Electrodynamics of Continuous Media, Pergamon Press Ltd., 1984.
  • [37] H. V. Baghdasaryan, T. M. Knyazyan, A. S. Berberyan, T. T. Hovhannisyan and M. Marciniak: Numerical analysis of impact of DBRs' outermost layers on optical characteristics of a surface-normal electro-absorption modulator by the method of single expression. Proc. 11th Int. Conf. on Transparent Optical Networks - ICTON 2009, IEEE Catalogue No. CFP09485 IEEE, Azores, Tu.C1.4, 2009.
  • [38] H. V. Baghdasaryan, T. M. Knyazyan and T. H. Baghdasaryan: Numerical model of new type of DFB SOA on uniform DBR structure completely transparent at Bragg wavelength. European Semiconductor Laser Workshop 2008, Eindhoven, 13, 2008.
  • [39] D. E. Pelinovsky, J. Sears, L. Brzozowski and E. H. Sargent: Stable all.optical limiting in nonlinear periodic structures. I: Analysis. J. Opt. Soc. Am. B19, 43-53, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.