Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 18, No. 4 | 366-375
Tytuł artykułu

Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metal-dielectric layered stacks for imaging with sub-wavelength resolution are regarded as linear isoplanatic systems - a concept popular in Fourier optics and in scalar diffraction theory. In this context, a layered flat lens is a one-dimensional spatial filter characterised by the point spread function. However, depending on the model of the source, the definition of the point spread function for multilayers with sub-wavelength resolution may be formulated in several ways. Here, a distinction is made between a soft source and hard electric or magnetic sources. Each of these definitions leads to a different meaning of perfect imaging. It is shown that some simple interpretations of the PSF, such as the relation of its width to the resolution of the imaging system are ambiguous for the multilayers with sub-wavelenth resolution. These differences must be observed in point spread function engineering of layered systems with sub-wavelength sized PSF.
Wydawca

Rocznik
Strony
366-375
Opis fizyczny
Bibliogr. 34 poz., il., wykr.
Twórcy
Bibliografia
  • [1] J. B. Pendry: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966-3969, 2000.
  • [2] S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith and S. Schultz: The asymmetric lossy near-perfect lens. J. Mod. Opt. 49, 1747-1762, 2002.
  • [3] N. Fang, H. Lee, C. Sun and X. Zhang: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534-537, 2005.
  • [4] D. O. Melville and R. J. Blaikie: Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127-2134, 2005.
  • [5] S. A. Ramakrishna and J. B. Pendry: Removal of absorption and increase in resolution in a near-field lens via optical gain. Phys. Rev. B67, 201101, 2003.
  • [6] B. Saleh and M. Teich: Fundamentals of Photonics, John Wiley & Sons, Inc, 2nd ed., 2007.
  • [7] J. W. Goodman: Introduction to Fourier Optics, Roberts & Co Publ., 3rd ed., 2005.
  • [8] B. Lee, Ph. Lalanne and Y. Fainman: Plasmonic diffractive optics and imaging: feature introduction. Appl. Optics 49, PDO1-PDO1 (2010), (together with the contents of the topical issue of Appl. Optics 49 on: Plasmonic diffractive optics and imaging. Information Processing, 2010.
  • [9] A. Wood, J. B. Pendry and D. P. Tsai: Directed subwave-length imaging using a layered metal-dielectric system. Phys. Rev. B74, 115116, 2006.
  • [10] M. Scalora, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler and J. Haus: Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks. Opt. Express 15, 508-523, 2007.
  • [11] D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. Haus, M. J. Bloemer and M. Scalora: Tailoring metallodielectric structures for superre-solution and superguiding applications in the visible and near-IR ranges. Phys. Rev. A77, 033848, 2008.
  • [12] N. D. Mattiucci, D'Aguanno, M. Scalora, M. J. Bloemer and C. Sibilia: Transmission function properties for multi-layered structures: Application to super-resolution. Opt. Express 17, 17517-17529, 2009.
  • [13] P. A. Belov, C. Simovski and P. Ikonen: Canalization of subwavelength images by electro-magnetic crystals. Phys. Rev. B71, 193105, 2005.
  • [14] P. A. Belov and Y. Hao: Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B73, 113110, 2006.
  • [15] X. Li, S. He and Y. Jin: Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies. Phys. Rev. B75, 045103, 2007.
  • [16] R. Kotynski and T. Stefaniuk: Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes. J. Opt. A-Pure Appl. Op. 11, 015001, 2009.
  • [17] R. Kotynski and T. Stefaniuk: Multiscale analysis of sub-wavelength imaging with metal-dielectric multilayers. Opt. Lett. 35, 1133-1135, 2010.
  • [18] R. Kotynski, T. Stefaniuk and A. Pastuszczak: Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers. ArXiv:1002.0658, 2010.
  • [19] A. M. Conforti, M. Guasoni and C. D. Angelis: Sub wavelength diffraction management. Opt. Lett. 33, 2662, 2008.
  • [20] O. Melville and R. J. Blaikie: Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography. J. Opt. Soc. Am. B23, 461-467, 2006.
  • [21] C. P. Moore, R. J. Blaikie and M. D. Arnold: An improved transfer-matrix model for optical superlenses. Opt. Express 17, 14260-14269, 2009.
  • [22] D. O. S. Melville and R. J. Blaikie: Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography. J. Opt. Soc. Am. B23, 461-467, 2006.
  • [23] P. Wrobel, J. Pniewski, T. J. Antosiewicz and T. Szoplik: Focusing radially polarized light by concentrically corrugated silver film without a hole. Phys. Rev. Lett. 102, 183902, 2009.
  • [24] C. P. Moore, R. J. Blaikie and M. D. Arnold: An improved transfer-matrix model for optical superlenses. Opt. Express 17, 14260-14269, 2009.
  • [25] X. Li, S. He and Y. Jin: Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies. Phys. Rev. B75, 045103, 2007.
  • [26] M. A. Vincenti, A. D'Orazio, M. G. Cappeddu, N. Akozbek, M. J. Bloemer and M. Scalora: Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies. J. Appl. Phys. 105, 103103, 2009.
  • [27] C. P. Moore, M. D. Arnold, P. J. Bones and R. J. Blaikie: Image fidelity for single-layer and multi-layer silver superlenses. J. Opt. Soc. Am. A25, 911-918, 2008.
  • [28] Q. M. Quan, S. L. Zhu and R. P. Wang: Refraction in the fixed direction at the surface of dielectric/silver superlattice. Phys. Lett. A359, 547-549, 2006.
  • [29] X. Li and F. Zhuang: Multilayered structures with high subwavelength resolution based on the metal-dielectric composites. J. Opt. Soc. Am. A26, 2521-2525, 2009.
  • [30] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami: Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74, 1212, 1999.
  • [31] R. Kotyśki, K. Król, J. Pniewski and K. Panajotov: Analysis of two-dimensional polarisation-coupled impulse response in multilayered metallic flat lens. Proc. SPIE 6987, 69870G, 2008.
  • [32] Handbook of Optical Constants of Solids, edited by A. Palik, Academic Press, 1998.
  • [33] P. Markos and C. M. Soukoulis: Wave Propagation from Electrons to Photonic Crystals and Left-Handed Materials. Princeton University Press, Princeton and Oxford, 2008.
  • [34] P. Johnson and R. Christy: Optical constants of the noble metals. Phys. Rev. B6, 4370-4379, 1972.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.