Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 18, No. 4 | 352-365
Tytuł artykułu

Nanophotonic technologies for single-photon devices

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The progress in nanofabrication has made possible the realization of optic nanodevices able to handle single photons and to exploit the quantum nature of single-photon states. In particular, quantum cryptography (or more precisely quantum key distribution, QKD) allows unconditionally secure exchange of cryptographic keys by the transmission of optical pulses each containing no more than one photon. Additionally, the coherent control of excitonic and photonic qubits is a major step forward in the field of solid-state cavity quantum electrodynamics, with potential applications in quantum computing. Here, we describe devices for realization of single photon generation and detection based on high resolution technologies and their physical properties. Particular attention will be devoted to the description of single-quantum dot sources based on photonic crystal microcavites optically and electrically driven: the electrically driven devices is an important result towards the realization of single photon source 'on demand'. A new class of single photon detectors, based on superconducting nanowires, the superconducting single-photon detectors (SSPDs) are also introduced: the fabrication techniques and the design proposed to obtain large area coverage and photon number-resolving capability are described.
Wydawca

Rocznik
Strony
352-365
Opis fizyczny
Bibliogr. 102 poz., il., wykr.
Twórcy
autor
autor
autor
autor
autor
autor
autor
Bibliografia
  • [1] P. N. Prasad: Nanophotonics. John Wiley & Sons, Inc., New Jersey, USA, 2004.
  • [2] G. E. Moore: Cramming more components onto integrated circuits. Electronics 38, 114-117, 1965.
  • [3] D. Bouwmeester, A. K. Ekert and A. Zeilinger: The Physics of Quantum Information, Springer, Berlin, 2000.
  • [4] A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdr., L. Lunghi, M. Francardi, A. Gerardino and G. Patriarche: Telecom-wavelength single-photon sources for quantum communications. J. Phys. Condens. Mat. 19, 225005, 2007.
  • [5] R. Loudon: The Quantum Theory of Light, Oxford University Press, 2000.
  • [6] H. J. Kimble, M. Dagenais and L. Mandel: Photon anti-bunching in resonance fluorescence. Phys. Rev. Lett. 39, 691-695, 1977.
  • [7] T. Basché, W. E. Moerner, M. Orrit and H. Talon: Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516, 1992.
  • [8] M. Oxborrow and A. G. Sinclair: Single-photon sources. Contemp. Phys. 46, 173, 2005.
  • [9] C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon and Y. Yamamoto: Indistinguishable photons from a single-photon device. Nature 419, 594, 2002.
  • [10] J. M Gírard and B. Gayral: Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 17, 2089-2095, 1999.
  • [11] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu and A. Imamoglu: A quantum dot single-photon turnstile device. Science 290, 2282, 2000.
  • [12] C. Santori, M. Pelton, G. Solomon, Y. Dale and Y. Yamamoto: Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502, 2001.
  • [13] V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson and G. Bjork: Single quantum dots emit single photons at a time: Antibunching experiments. Appl. Phys. Lett. 78, 2476, 2001.
  • [14] M. De Vittorio, F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, A. Bramati and R. Cingolani: Recent advances on single photon sources based on single colloidal nano-crystals. Opto.Electron. Rev. 18, 1-9, 2010.
  • [15] A. Fiore, U. Oesterle, R. P. Stanley, R. Houdre, F. Lelarge, M. Ilegems, P. Borri, W. Langbein, D. Birkedal, J. M. Hvam, M. Cantoni and F. Bobard: Structural and electrooptical characteristics of quantum dots emitting at 1.3 ěm on gallium arsenide. IEEE J. Quantum Elect. 37, 1050, 2001.
  • [16] J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdre, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki and J. Ratajczak: Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 ěm applications. J. Appl. Phys. 91, 6710, 2002.
  • [17] R. H. Hadfield: Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696-705, 2009.
  • [18] M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson and D. A. Ritchie: On-demand single-photon source for 1.3 μm telecom fiber. Appl. Phys. Lett. 86, 201111, 2005.
  • [19] C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov and G. Gol'tsman: Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors. Appl. Phys. Lett. 91, 031106, 2007.
  • [20] E. Knill, R. Laflamme and G. J. Milburn: A scheme for efficient quantum computation with linear optics. Nature 409, 46-52, 2001.
  • [21] C. Simon, H. De Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden and N. Gisin: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett 98, 190503, 2007.
  • [22] S. Cova, A. Longoni and A. Andreoni: Towards picoseconds resolution with single-photon avalanche diodes. Rev. Sci. Instrum. 52, 408-412, 1981.
  • [23] B. Cabrera, RM Clarke, P. Colling, A. J. Miller. S. Nam and R. W. Romani: Detection of single infrared, optical and ultraviolet photons using superconducting transition edge sensors. Appl Phys. Lett. 73, 735-737, 1998.
  • [24] G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski: Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705, 2001.
  • [25] G. Gol'tsman, O. Minaeva, A. Korneev, M. Tarkhov, I. Rubtsova, A. Divochiy, I. Milostnaya, G. Chulkova, N. Kaurova, B. Voronov, D. Pan, J. Kitaygorsky, A. Cross, A. Pearlman, I. Komissarov, W. Slysz, M. Wegrzecki, P. Grabiec and R. Sobolewski: Middle-infrared to visible.light ultrafast superconducting single-photon detectors. IEEE T. Appl. Supercond. 17, 246, 2007.
  • [26] M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov and G. Gol'tsman: Ultrafast reset time of superconducting single photon detectors. Appl. Phys. Lett. 92, 241112, 2008.
  • [27] A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G.N. Gol'tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Słysz, A. Pearlman, A. Verevkin and R. Sobolewski: Sensitivity and gigahertz counting performance of NbN superconducting single.photon detectors. Appl. Phys. Lett. 84, 5338, 2004.
  • [28] K. S. Il'in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol'tsman, R. Sobolewski, S. I. Cherednichenko and E. M. Gershenzon: Picosecond hot-electron energy relaxation in NbN superconducting photodetectors. Appl. Phys. Lett. 76, 2752-2754, 2000.
  • [29] M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré and A. Fiore: Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photon sources. Phys. Status Solidi (c) 3, 3693-3696, 2006.
  • [30] A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L. H. Li, N. Le Thomas, R. Houdré and A. Fiore: Fabrication and characterization of point defect photonic crystal nanocavities at telecom wavelength. Microelectron. Eng. 84, 1480-1484, 2007.
  • [31] L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré and A. Fiore: Enhanced spontaneous emission rate from a single InAs quantum dot in a photonic crystal nanocavity at telecom wavelengths. Appl. Phys. Lett. 91, 123115, 2007.
  • [32] F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore and M. Gurioli: Spectral tuning and near-field imaging of photonic crystal microcavities. Phys. Rev. B78, 041401(R), 2008.
  • [33] M. Francardi, A. Gerardino, L. Balet, N. Chauvin, D. Bitauld, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré and A. Fiore: Towards a LED based on a photonic crystal nanocavity for single photon sources at telecom wavelength. Microelelectron. Eng. 85, 1162-1165, 2008.
  • [34] M. Francardi, A. Gerardino, L. Balet, N. Chauvin, D. Bitauld, C. Zinoni, L. H. Li, B. Alloing, N. Le Thomas, R. Houdré and A. Fiore: Cavity-enhanced photonic crystal light-emitting diode at 1300 nm. Microelelectron. Eng. 86, 1093-1095, 2009.
  • [35] M. Francardi, L. Balet, A. Gerardino, N. Chauvin, D. Bitauld, L. H. Li, B. Alloing and A. Fiore: Enhanced spontaneous emission in a photonic-crystal light-emitting diode. Appl. Phys. Lett. 93, 091107, 2008.
  • [36] E. M. Purcell: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681, 1946.
  • [37] H. Benisty, J. M. Gérard and R. Houdré, Confined Photon Systems - Fundamentals and Applications, Lectures from the Summerschool held in Cargèse, edited by J. Rarity and C. Weisbuch J. Rarity and C. Weisbuch Corsica, 3-15 August 1998.
  • [38] K. J. Vahala: Optical microcavities. Nature 424, 839-846, 2003.
  • [39] E. Yablonovitch: Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059, 1987.
  • [40] S. John: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486, 1987.
  • [41] J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.
  • [42] Y. Akahane, T. Asano, B. S. Song and S. Noda: High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944, 2003.
  • [43] E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe and T. Watanabe: Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 88, 041112, 2006.
  • [44] T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J. P. Reithmaier, M. Kamp and A. Forchel: Enhanced light emission of InxGa1-xAs quantum dots in a two-dimensional photonic-crystal defect microcavity. Phys. Rev. B66, 041303 (R), 2002.
  • [45] T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama: Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature. Appl. Phys. Lett. 85, 3989, 2004.
  • [46] A. F. Koenderink, M. Kafesaki, C. M. Soukoulis and V. Sandoghdar: Spontaneous emission in the near field of two-dimensional photonic crystals. Opt. Lett. 30, 3210-3212, 2005.
  • [47] A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff and A. Imamoglu: Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158-1161, 2005.
  • [48] W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi and T. M. Hsu: Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96, 117401, 2006.
  • [49] Y. Akahane, T. Asano, B. Song and S. Noda: Development of high-q photonic nanocavity using two-dimensional photonic crystal slabs. SEI Technical Review 59, 21-26, 2005.
  • [50] B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi and E. Kapon: Growth and characterization of single quantum dots emitting at 1300 nm. Appl. Phys. Lett. 86, 101908, 2005.
  • [51] O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien and P. D. Dapkus: Lithographic tuning of a two-dimensional photonic crystal laser array. IEEE Photonic. Tech. L. 12, 1126, 2000.
  • [52] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200-203, 2004.
  • [53] H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim and Y. H. Lee: Characteristics of modified single-defect two-dimensional photonic crystal lasers. IEEE J. Quantum Elect. 38, 1353, 2002.
  • [54] S. Kohmoto, H. Nakamura, T. Ishikawa and K. Asakawa: Site-controlled self-organization of individual InAs quantum dots by scanning tunnelling probe-assisted nanolithography. Appl. Phys. Lett. 75, 3488, 1999.
  • [55] M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip and I. Abram: Single photon emission from site-controlled pyramidal quantum dots. Appl. Phys. Lett. 84, 648, 2004.
  • [56] S. Kiravittaya, A. Rastelli and O. G. Schmidt: Photoluminescence from seeded three-dimensional InAs/GaAs quantum-dot crystals. Appl. Phys. Lett. 88, 43112, 2006.
  • [57] J. S. Kim, M. Kawabe and N. Koguchi: Ordering of high-quality InAs quantum dots on defect-free nanoholes. Appl. Phys. Lett. 88, 72107, 2006.
  • [58] P. Atkinson, S. P. Bremner, D. Anderson, G. A. C. Jones and D. A. Ritchie: Size evolution of size controlled InAs quantum dots grown by molecular beam epitaxy on prepatterned GaAs substrates. J. Vac. Sci. Technol. B24, 1523, 2006.
  • [59] A. Faraon, D. Englund, I. Fushman, J. Vučkovič, N. Stoltz and P. Petroff: Local quantum dot tuning on photonic crystal chips. Appl. Phys. Lett. 90, 213110, 2007.
  • [60] S. Noda, M. Fujita and T. Asano: Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics 1, 449-458, 2007.
  • [61] D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers and R. L. Williams: Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes. Appl. Phys. Lett. 87, 151107, 2005.
  • [62] S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele and V. Lehmann: Tunable two-dimensional photonic crystals using liquid crystal infiltration. Phys. Rev. B61, R2389, 2000.
  • [63] F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn and D. Wiersma: Rewritable photonic circuits. Appl. Phys. Lett. 89, 211117, 2006.
  • [64] F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore and M. Gurioli: Tuning of photonic crystal cavities by controlled removal of locally infiltrated water. Appl. Phys. Lett. 95, 173112, 2009.
  • [65] S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin and D. G. Deppe: Scanning a photonic crystal slab nanocavity by condensation of xenon. Appl. Phys. Lett. 87, 141105, 2005.
  • [66] S. Strauf, M. T. Rakher, I. Carmeli, K. Hennessy, C. Meier, A. Badolato, M. J. A. De Dood, P. M. Petroff, E. L. Hu, E. G. Gwinn and D. Bouwmeester: Frequency control of photonic crystal membrane resonators by monolayer deposition. Appl. Phys. Lett. 88, 043116, 2006.
  • [67] K. Hennessy, C. Högerle, E. Hu, A. Badolato and A. Imamoglu: Tuning photonic nanocavities by atomic force microscope nano-oxidation. Appl. Phys. Lett. 89, 041118, 2006.
  • [68] G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski: Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705-707, 2001.
  • [69] C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden and N. Gisin: Time-resolved and antibunching experiments on single quantum dots at 1300 nm. Appl. Phys. Lett. 88, 131102, 2006.
  • [70] H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee: Electrically driven single-cell photonic crystal laser. Science 305, 1444-1447, 2004.
  • [71] M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. VanVeldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. DeWaardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel and M. K. Smit: Lasing in metallic-coated nanocavities. Nat. Photonics 1, 589, 2007.
  • [72] C. Bockler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loeffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon and J. M. Gerard: Electrically driven high-Q quantum dot-micropillar cavities. Appl. Phys. Lett. 92, 091107, 2008.
  • [73] D. J. P Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie and A. J. Shields: Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz. New J. Phys. 10, 043035, 2008.
  • [74] H. Altug, D. Englund and J. Vuckovic: Ultra-fast photonic crystal nanocavity laser. Nat. Phys 2, 484-488, 2006.
  • [75] N. Chauvin, C. Zinoni, M. Francardi, A. Gerardino, L. Balet, B. Alloing, L. H. Li and A. Fiore: Controlling the charge environment of single quantum dots in a photonic-crystal cavity. Phys. Rev. B80, 241306(R), 2009.
  • [76] H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki and Y. Yamamoto: Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 1, 343, 2007.
  • [77] R. H. Hadfield, M. J. Stevens, R. P. Mirin and S. W. Nam: Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors. J. Appl. Phys. 101, 103104, 2007.
  • [78] A. Korneev, A. Lipatov, O. Okunev, G. Chulkova, K. Smirnov, G. Gol'tsman, J. Zhang, W. Slysz, A. Verevkin and R. Sobolewski: GHz counting rate NbN single-photon detector for IR diagnostics of VLSI CMOS circuits. Microelectron. Eng. 69, 274-278, 2003.
  • [79] B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang and K. K. Berggren: 781 Mbit/s photon-counting optical communications using a superconducting nanowire detector. Opt. Lett. 31, 444-446, 2006.
  • [80] R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam and G. S. Buller: Sub-centimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength. Opt. Lett. 32, 2266-2268, 2007.
  • [81] A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G.N. Gol'tsman and A. Semenov: Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range. Appl. Phys. Lett. 80, 4687-4689, 2002.
  • [82] A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol'tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin and R. Sobolewski: Sensitivity and gigahertz counting performance of NbN superconducting single photon detectors. Appl. Phys. Lett. 84, 5338-5340, 2004.
  • [83] A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman and B. Voronov: Kinetic inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88, 111116, 2006.
  • [84] R. J. Collins, R. H. Hadeld, V. Fernandez, S. W. Nam and G. S. Buller: Low timing jitter detector for gigahertz quantum key distribution. Electron. Lett. 43, 180-182, 2007.
  • [85] D. Rosenberg, A. E. Lita, A. J. Miller and S. W. Nam: Noise-free high-efficiency photon-number-resolving detectors. Phys. Rev. A71, 061803, 2005.
  • [86] R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin and S. W. Nam: Single photon source characterization with a superconducting single photon detector. Opt. Express 13, 10846-10853, 2005.
  • [87] K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol'tsman and K. K. Berggren: Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt. Express 14, 527, 2006.
  • [88] F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul and F. Lévy: Single-photon detectors for optical quantum information applications. Opt. Express 16, 3191-3196, 2008.
  • [89] S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra and T. M. Klapwijk: Low noise superconducting single photon detectors on silicon. Appl. Phys. Lett. 93, 131101, 2008.
  • [90] A. J. Shields: Semiconductor quantum light sources. Nat. Photonics 1, 215-223, 2007.
  • [91] F. Marsili, A. Gaggero, L. H. Li, A. Surrente, R. Leoni, F. Lévy and A. Fiore: High quality superconducting NbN thin films on GaAs. Supercond. Sci. Tech. 22, 095013, 2009.
  • [92] A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, R. Sanjine and A. Fiore: Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications. to be published.
  • [93] F. Mattioli, R. Leoni, A. Gaggero, M.G. Castellano, P. Carelli, F. Marsili and A. Fiore: Electrical characterization of superconducting single photon detectors. J. Appl. Phys. 101, 054302, 2007.
  • [94] A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol'tsman and B. M. Voronov: Constriction-limited detection efficiency of superconducting nanowiresingle-photon detectors. Appl. Phys. Lett. 90, 101110, 2007.
  • [95] D. Bitauld, F. Marsili, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul and F. Levy: NbN nanowire superconducting single photon detectors fabricated on MgO substrate. J. Mod. Optics 56, 395-400, 2009.
  • [96] M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano and R. Cristiano: Characterization of parallel superconducting nanowire single photon detectors. Supercond. Sci. Tech. 22, 055006, 2009.
  • [97] M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov and G. Gol'tsman: A cascade switching superconducting single photon detector. Appl. Phys. Lett. 91, 262509, 2007.
  • [98] A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K.G. Lagoudakis, M. Benkahoul, F. Lévy and A. Fiore: Superconducting nanowire photon-number-resolving detector at telecom wavelength. Nat. Photonics 2, 302-306, 2008.
  • [99] M. Tarkhov, M. Claudon, J. Poizat, J. P. Korneev, A. Divochiy, A. Minaeva, O. Seleznev, V. Kaurova, N. Voronov, B. Semenov and A. V. Goltsman: Ultrafast reset time of superconducting single photon detectors. Appl. Phys. Lett. 92, 241112, 2008.
  • [100] A. E. Lita, A. J. Miller and S. W. Nam: Counting near-infrared single-photons, with 95% efficiency. Opt. Express 16, 3032-3040, 2008.
  • [101] E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol'tsman and K. K. Berggren: Multi-element superconducting nanowire single-photon detector. IEEE T. Appl. Supercon. 17, 279, 2007.
  • [102] A. J. Shields: Semiconductor quantum light sources. Nat. Photonics 1, 215-223, 2007.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.