Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 18, No. 2 | 121-136
Tytuł artykułu

Organic field-effect transistors

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reviews the recent year publications concerning organic field-effect transistors (OFETs). A lot of works have been performed to help understanding the structural and electrical properties of materials used to construct OFETs. It has been established that in partially ordered systems, the charge transport mechanism is thermally activated and field-assisted hopping transport and the hopping transport between disorder-induced localized states dominate over intrinsic polaronic hopping transport seen in organic single crystals. Many research attempts have been carried out on the design of air-stable organic semiconductors with a solution process which is capable of producing OFETs with excellent properties and good stability when subjected to multiple testing cycles and under continuous electrical bias. Recent experiments have demonstrated ambipolar channel conduction and light emission in conjugated polymer FETs. These achievements are the basis for construction of OLED based displays driven by active matrix consisting of OFETs.
Wydawca

Rocznik
Strony
121-136
Opis fizyczny
Bibliogr. 64 poz., wykr.
Twórcy
  • Department of Technical Education, Technical University of Radom, 29 Malczewskiego Str., 26-600 Radom, Poland
Bibliografia
  • [1] G. Horowitz: Organic field-effect transistors. Adv. Mater. 10, 365-377, 1998.
  • [2] G. Guillaud, J. Simon and J. P. Germain: Metallophthalocyanines gas sensors, resistors and field effect transistors. Coordin. Chem. Rev. 178-180, 1433-1484, 1998.
  • [3] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters: Field effect transistors made from solution - processed organic transistors. Synthetic Met. 88, 37-55, 1997.
  • [4] A. Facchetti: Semiconductors for organic transistors. Mater. Today 10, 28-37, 2007.
  • [5] A. Salleo: Charge transport in polymeric transistors. Mater. Today 10, 38-45, 2007.
  • [6] Y. D. Park, J. A. Lim, H. S. Lee and K. Cho: Interface engineering in organic transistors. Mater. Today 10, 46-54, 2007.
  • [7] J. Żmija, M. J. Małachowski, M. Wacławek and K. Ścieżka: Engineering of organic materials in electronics. Chemia. Dydaktyka. Ekologia. Metrologia XI, No. 3/4, 15-30, 2006. (in Polish)
  • [8] J. Żmija, M. J. Małachowski and J. Zieliński: Progress in application of organic semiconductors in displays. 5th Scientific Symposium, Proc. SPIE 82 7207-664-2, 41-59, 2006. (in Polish)
  • [9] N. F. Mott: Introductory talk; Conduction in noncrystalline materials. Cavendish Laboratory, Cambridge, available online 13 May, 2003.
  • [10] C. Godet: Variable range hopping revisited: the case of an exponential distribution of localized states. J. Non-Cryst. Solids 299-302, 333-338, 2002.
  • [11] M. Pope: Electronic processes in organic solids. Annu. Rev. Phys. Chem. 35, 613-655, 1984.
  • [12] L. Li, G. Meller and H. Kosina: Analytical conductivity model for doped organic semiconductors. J. Appl. Phys. 101, 033716-4, 2007.
  • [13] M. J. Małachowski: HgSe thin-film transistors. Phys. Stat. Sol. 14, K35-K37, 1966.
  • [14] S. Scheinert and G. Paasch: Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors. J. Appl. Phys. 105, 014509, 2009.
  • [15] T. Lindner, G. Paasch and S. Scheinert: Operation and properties of ambipolar organic heterostructure field-effect transistors. J. Appl. Phys. 101, 014502, 2007.
  • [16] T. Umeda, S. Tokito and D. Kumaki: High-mobility and air-stable organic thin-film transistors with highly ordered semiconducting polymer films. J. Appl. Phys. 101, 054517, 2007.
  • [17] G. Paasch and S. Scheinert: Space charge layers in organic field-effect transistors with Gaussian or exponential semiconductor density of states. J. Appl. Phys., 101, 024514, 2007.
  • [18] B. H. Hamadani and D. Natelson: Gated nonlinear transport in organic polymer field effect transistors. J. Appl. Phys. 95, 1227, 2004.
  • [19] L. Wang, L. D. Fine, D. Basu and A. Dodabalapur: Electric-field-dependent charge transport in organic thin-film transistors. J. Appl. Phys. 101, 054515, 2007.
  • [20] B. H. Hamadani, C. A. Richter, D. J. Gundlach, R. J. Kline, I. McCulloch and M. Heeney: Influence of source-drain electric field on mobility and charge transport in organic field-effect transistors. J. Appl. Phys. 102, 044503, 2007.
  • [21] Y. Inoue, Sh. Tokito, K. Ito and T. Suzuki: Organic thin-film transistors based on anthracene oligomers. J. Appl. Phys. 95, 5795-5799, 2004.
  • [22] A. Dodabalapur, H. E. Katz, L. Torsi and R. C. Haddon: Organic heterostructure field-effect transistors. Science 269, 1560-1562, 1995.
  • [23] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus and R. H. Friend: General observation of n-type field-effect behavior in organic semiconductors. Nature (London) 434, 194, 2005.
  • [24] T. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer and G. Horowitz: Organic inverter circuits employing ambipolar pentacene field-effect transistors. Appl. Phys. Lett. 89, 033512-4, 2006.
  • [25] N. Benson, A. Gassmann, E. Mankel, T. Mayer, C. Melzer, R. Schmechel and H. von Seggern: The role of Ca traces in the passivation of silicon dioxide dielectrics for electron transport in pentacene organic field effect transistors. J. Appl. Phys. 104, 054505-10, 2008.
  • [26] T. F. Guo, Z. J. Tsai, S. Y. Chen, T. C. Wen and C. T. Chung: Influence of polymer gate -dielectrics on n-channel conduction of pentacene-based organic field-effect transistors. J. Appl. Phys. 101, 124505-11, 2007.
  • [27] P. Miskiewicz, S. Kotarba, J. Jung, T. Marszalek, M. Mas-Torrent, E. Gomar-Nadal, D. B. Amabilino, C. Rovira, J. Veciana, W. Maniukiewicz and J. Ulanski: Influence of SiO2 surface energy on the performance of organic field effect transistors based on highly oriented, zone-cast layers of a tetrathiafulvalene derivative. J. Appl. Phys. 104, 054509-16, 2008.
  • [28] L. A. Majewski, R. Schroeder, M. Grell, P. A. Glarvey and M. L. Turner: High capacitance organic field-effect transistors with modified gate insulator surface. J. Appl. Phys. 96, 5781-5787, 2004.
  • [29] K. Ueno, Sh. Abe, R. Onoki and K. Saiki: Anodization of electrolytically polished Ta surfaces for enhancement of carrier injection into organic field-effect transistors. J. Appl. Phys. 98, 114503-114511, 2005.
  • [30] R. Parashkov, E. Becker, G. Ginev, T. Riedl, H. H. Johannes and W. Kowalsky: All-organic thin-film transistors made of poly(3-butylthiophene) semiconducting and various polymeric insulating layers. J. Appl. Phys. 95, 1594-1596, 2004.
  • [31] L. A. Majewski, R. Schroeder and M. Grell: Organic field-effect transistors with ultrathin gate insulator. Synth. Met. 144, 97-100, 2004.
  • [32] Y. Chen, I. Shih and S. Xiao: Effects of FeCl3 doping on polymer-based thin film transistors. J. Appl. Phys. 96, 454-458, 2004.
  • [33] Semiconducting Polymers-Chemistry: Physics, Engineering, edited by G. Hodziioannou and P. F. van Hotten, Wiley-VCH Verlag GmbH, 2000.
  • [34] D. J. Gundlach, K. P. Pernstich, G. Wilckens, M. Grüter, S. Haas and B. Batlogg: High mobility n-channel organic thin-film transistors and complementary inverters. J. Appl. Phys. 98, 064502, 2005.
  • [35] C. Goldmann, C. Krellner, K. P. Pernstich, S. Haas, D. J. Gundlach and B. Batlogg: Determination of the interface trap density of rubrene single-crystal field-effect transistors and comparison to the bulk trap density. J. Appl. Phys. 99, 034507, 2006.
  • [36] R. V. R. Balakrishnan, A. K. Kapoor, V. Kumar, S. C. Jain and R. Mertens: Effect of field dependent trap occupancy on organic thin film transistor characteristics. J. Appl. Phys. 94, 6302-6306, 2003.
  • [37] T. Holstein: Studies of polaron motion: part II. The small polaron. Ann. Phys. 8, 343-389, 1959.
  • [38] J. Frenkel: On breakdown phenomena of insulators and electronic semiconductors. Phys. Rev. 54, 647-648, 1938.
  • [39] S. Scheinert and G. Paasch: Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors. J. Appl. Phys. 105, 014509, 2009.
  • [40] T. Minari, T. Nemoto and S. Isoda: Temperature and electric-field dependence of the mobility, of a single-grain penta-cene field-effect transistor. J. Appl. Phys. 99, 034506, 2006.
  • [41] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid and G. Schitter: Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator. J. Appl. Phys. 96, 6431-6438, 2004.
  • [42] S. Fukuda, H. Kajii, H. Okuya, T. Ogata, M. Takahashi and Y. Ohmori: Investigation of interfaces between insulator and active layer, and between active layer and electrodes in n-type organic field-effect transistors. Jpn. J. Appl. Phys. 47, 1307-1310, 2008.
  • [43] J. B. Koo, K. S. Suh, I. K. You and S. H. Kim: Device characteristics of pentacene dual-gate organic thin-film transistor. Jpn. J. Appl. Phys. 46, 5062-5066, 2007.
  • [44] J. Zaumseil, K. W. Baldwin and J. A. Rogers: Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. J. Appl. Phys. 93, 6117, 2003.
  • [45] L. A. Majewski, R. Schroeder and M. Grell: Organic field-effect transistors with electroplated platinum contacts. Appl. Phys. Lett. 85, 3620-3622, 2004.
  • [46] R. J. Chesterfield, J. C. McKeen, C. R. Newman, C. D. Frisbie, P. C. Ewbank, K. R. Mann and L. L. Miller: Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors. J. Appl. Phys. 95, 6396-6405, 2004.
  • [47] S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata and K. Yase: Influence of moisture on device characteristics of polythiophene-based field-effect transistors. J. Appl. Phys. 95, 5088-5093, 2004.
  • [48] T. Ahimine, T. Yasuda, M. Saito, H. Nakamura and T. Tsutsui: Air stability of p-channel organic field-effect transistors based on oligo-p-phenylenevinylene derivatives. Jpn. J. Appl. Phys. 47, 1760-1762, 2008.
  • [49] J. Park, J. Park, N. Kim, H. J. Lee and M. Yi: Performance enhancement of organic thin-film transistors with C60/Au bilayer electrode, Jpn. J. Appl. Phys. 47, 5668-5671, 2008.
  • [50] D. W. Park, C. A. Lee, K. D. Jung, B. J. Kim, B. G. Park, H. Shin and J. D. Lee: Electrically stable organic thin-film transistors and circuits using organic/inorganicdouble-layer insulator. Jpn. J. Appl. Phys. 46, 2640-2644, 2007.
  • [51] H. W. Zan and K. H. Yen: Vertical-channel organic thin-film transistors with meshed electrode and low leakage current. Jpn. J. Appl. Phys. 46, 3315-3318, 2007.
  • [52] T. Sekitani and T. Someya: Air-stable operation of organic field-effect transistors on plastic films using organic/metallic hybrid passivation layers. Jpn. J. Appl. Phys. 46, 4300-4306, 2007.
  • [53] J. Ficker, A. Ullmann, W. Fix, H. Rost and W. Clemens: Stability of polythiophene-based transistors and circuits. J. Appl. Phys. 94, 2638-2641, 2003.
  • [54] R. Schroeder, L. A. Majewski and M. Grell: Improving organic transistor performance with Schottky contacts. Appl. Phys. Lett. 84, 1004-1006, 2004.
  • [55] A. Takshi, A. Dimopoulos and J. D. Madden: Depletion width measurement in an organic Schottky contact using a metal-semiconductor field-effect transistor. Appl. Phys. Lett. 91, 083513, 2007.
  • [56] A. Knobloch, A. Manuelli, A. Bernds and W. Clemens: Fully printed integrated circuits from solution processable polymers. J. Appl. Phys. 96, 2286-2291, 2004.
  • [57] D. Kim, S. Jeong, J. Moon, S. Han and J. Chung: Organic thin film transistors with ink-jet printed metal nanoparticle electrodes of a reduced channel length by laser ablation. Appl. Phys. Lett. 91, 071114, 2007.
  • [58] D. R. Hines, V. W. Ballarotto, E. D. Williams, Y. Shao and S. A. Solin: Transfer printing methods for the fabrication of flexible organic electronics. J. Appl. Phys. 101, 024503, 2007.
  • [59] T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, P. van't Hof, J. Alma and J. C. Hummelen: Solution processible organic transistors and circuits based on a C70 methanofullerene. J. Appl. Phys. 98, 054503, 2005.
  • [60] N. J. Pinto, R. Pérez, C. H. Mueller, N. Theofylaktos and F. A. Miranda: Dual input AND gate fabricated from a single channel poly 3-hexylthiophene thin film field effect transistor. J. Appl. Phys. 99, 084504, 2006.
  • [61] G. Gu, M. G. Kane and S. C. Mau: Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors. J. Appl. Phys. 101, 014504, 2007.
  • [62] S. H. Hur, C. Kocabas, A. Gaur, O. Ok Park, M. Shima and J. A. Rogers: Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks. J. Appl. Phys. 98, 114302, 2005.
  • [63] R. D. Yang, J. Park, C. N. Colesniuc, I. K. Schuller, W. C. Trogler and A. C. Kummel: Ultralow drift in organic thin- -film transistor chemical sensors by pulsed gating. J. Appl. Phys. 102, 034515, 2007.
  • [64] G. Guillaud, J. Simon and J. P. Germain: Metallophthalo-cyanines gas sensors, resistors and field effect transistors. Coordin. Chem. Rev. 178/180, 1433-1484, 1998.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.