Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 18, No. 1 | 56-62
Tytuł artykułu

Thermal properties and wavelength analysis of telecom oriented photonic-crystal VCSELs

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of the self-consistent comprehensive analysis of a room-temperature operation of InP-based 1300-nm AlInGaAs photonic-crystal (PhC) VCSELs are presented. In particular, an influence of PhC parameters on thermal effects within VCSEL volume and its emission wavelength are analysed. The PhC has been found to introduce a number of opposite effects including a possible light leakage through PhC holes. From one side, PhC holes make more difficult heat-flux extraction from VCSEL volume leading to higher temperature increases within it. But, from the other side, a properly manufactured PhC creates an efficient radial confinement mechanism for VCSEL radiation field. It enhances an interaction between the field and the active-region carriers leading to a decrease in both the VCSEL lasing threshold and temperature increases. Seemingly both effects may similarly affect VCSEL operation, but our analysis revealed, that thermal properties of the PhC VCSEL are mainly dependent on an efficient confinement of its radiation field within the active region impeding a mode leakage through PhC holes, whereas an importance of deterioration of heat-flux extraction from VCSEL volume is much less essential. The wavelength shift induced by a change of PhC parameters has been found not to exceed 4×10⁻³ μm.
Wydawca

Rocznik
Strony
56-62
Opis fizyczny
Bibliogr. 26 poz., il., wykr.
Twórcy
Bibliografia
  • [1] C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller and K. J. Ebeling: 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes. Electron. Lett. 33, 1790-1791, 1997.
  • [2] R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers and S. E. Callis: Transverse mode control of vertical-cavity top-surface-emitting lasers. IEEE Photonic Tech. L. 5, 374-377, 1993.
  • [3] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer and A. A. Allerman: Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation. IEEE Photonic Tech. L. 13, 927-929, 2001.
  • [4] H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling and A. Larsson: Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief. IEEE Photonic Tech. L. 11, 1536-1538, 1999.
  • [5] T. A. Birks, J. C. Knight and P. St. J. Russell: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961-963, 1997.
  • [6] H. G. Park, S. H. Kim, M. K. Seo, Y. G. Ju, S. B. Kim and Y. H. Lee: Characteristics of electrically driven two-dimensional photonic crystal lasers. IEEE J. Quantum. Elect. 41, 1131-1141, 2005.
  • [7] J. J. Raftery, Jr, A. C. Lehman, A. J. Danner, P. O. Leisher, A. V. Giannopoulos and K. D. Choquette: In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers. Appl. Phys. Lett. 89, 081119, 2006.
  • [8] P. O. Leisher, J. D. Sulkin and K. D. Choquette: Single-mode 1.3-µm photonic crystal vertical-cavity surface-emitting laser. IEEE J. Sel. Top. Quant. 13, 1290-1294, 2007.
  • [9] P. S. Ivanov, H. J. Unold, R. Michalzik, J. Maehnss, K. J. Ebeling and I. A. Sukhoivanov: Theoretical study of cold-cavity single-mode conditions in vertical-cavity surface-emitting lasers with incorporated two-dimensional photonic crystals. J. Opt. Soc. Am. B20, 2442-2447, 2003.
  • [10] P. S. Ivanov, M. Dragas, M. Cryan and J. M. Rorison: Theoretical investigation of transverse optical modes in photonic-crystal waveguides imbedded into proton-implanted and oxide-confined vertical-cavity surface-emitting lasers. J. Opt. Soc. Am. B22, 2270-2276, 2005.
  • [11] T. Czyszanowski, M. Dems, H. Thienpont and K. Panajotov: Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL. J. Phys. D: Appl. Phys. 41, 085102, 2008.
  • [12] T. Czyszanowski, M. Dems and K. Panajotov: Optimal parameters of photonic-crystal vertical-cavity surface-emitting diode lasers. IEEE J. Lightwave Technol. 25, 2331-2336, 2007.
  • [13] T. Czyszanowski, M. Dems and K. Panajotov: Single mode condition and modes discrimination in photonic-crystal 1.3 µm AlInGaAs/InP VCSEL. Opt. Express 15, 5604-5609, 2007.
  • [14] T. Czyszanowski, R. P. Sarzała, Ł. Piskorski, M. Dems, M. Wasiak, W. Nakwaski and K. Panajotov: Comparison of usability of oxide apertures and photonic crystals used to create radial optical confinements in 650-nm GaInP VCSELs. IEEE J. Quantum Elect. 43, 1041-1047, 2007.
  • [15] T. Czyszanowski, R. P. Sarzała, M. Dems, H. Thienpont, W. Nakwaski and K. Panajotov: Strong modes discrimination and low threshold in cw regime of 1300 nm AlInGaAs/InP VCSEL induced by photonic crystal. in print Phys. Status Solidi A.
  • [16] M. Dems, R. Kotynski and K. Panajotov: Plane wave admittance method - a novel approach for determining the electromagnetic modes in photonic structures. Opt. Express 13, 3196-3207, 2005.
  • [17] W. Nakwaski: Principles of VCSEL design. Opto-Electron. Rev. 16, 18-26, 2008.
  • [18] J. Piprek, J. K. White and A. J. SpringThorpe: What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?. IEEE J. Quantum Elect. 38, 1253-1259, 2002.
  • [19] M. Mehta, D. Feezell, D. A. Buell, A. W. Jackson, L. A. Coldren and J. E. Bowers: Electrical design optimization of single-mode tunnel-junction-based long-wavelength VCSELs. IEEE J. Quantum Elect. 42, 675-682, 2006.
  • [20] S. Adachi: GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications. J. Appl. Phys. 58, R1-R29, 1985.
  • [21] S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen and H. Sigg: The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical Model ling. J. Appl. Phys. 87, 7825-7837, 2000.
  • [22] E. Gini and H. Melchior: The refractive index of InP and its temperature dependence in the wavelength range from 1.2 µm to 1.6 µm. Proc. 8th Int. Conf. Indium Phosphide and Related Materials, IPRM apos. 96, 594-597, 1996.
  • [23] P. Koonath, S. Kim, W. J. Cho and A. Gopinath: Polarization-insensitive quantum-well semiconductor optical amplifiers. IEEE J. Quantum Elect. 38, 1282-1290, 2002.
  • [24] V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek and J. E. Bowers: High power 1320-nm waferbonded VCSELs with tunnel junction. IEEE Photonic. Tech. L. 15, 1495-1497, 2003.
  • [25] B. Mroziewicz, M. Bugajski and W. Nakwaski, Physics of Semiconductor Lasers, North-Holland, 1991.
  • [26] T. Czyszanowski, R. P. Sarzała, M. Dems, W. Nakwaski, H. Thienpont and K. Panajotov: Optimal photonic-crystal parameters assuring single mode operation of 1300 nm AlInGaAs vertical cavity surface emitting laser. submitted to J. Appl. Phys.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.