Czasopismo
2008
|
Vol. 54, No 3
|
323-342
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A comparatively large group of capillary optical fibers, referred to in this paper as COF, consists of several families of optical filaments. The basic division line goes through the wave guidance mechanism. Two basic kinds of capillary optical fibers are of refractive and photonic mechanism of guided wave transmission. The work tries to compare wave modes in both kinds of optical fiber capillaries: refractive (RCOF) and photonic (PCOF). The differences are emphasized indicating prospective application areas of these fibers. Refractive COF carries most of the modal light in the ring-like, high-refraction, optical glass core encircling an empty capillary hole. Refractive capillary optical fibers are used widely for photonic instrumentation applications, due to the proximity of optical wave and capillary hole with the evanescent wave. The hole can be filled with a material subject to optical guided wave spectrometry. Photonic COF carries most of the light in air (or vacuum). Thus, photonic capillary optical fibers are considered for trunk optical communications, with guided wave travelling in vacuum rather than in glass - avoiding in this way the Rayleigh scattering. The fundamental mode in a refractive COF is LPoi or dark hollow beam (DHB) of light with zero intensity on fiber axis. The fundamental mode in a photonic COF is Gaussian beam with maximum intensity on fiber axis. The photonic COFs can be further divided to two basic groups: porous or holey/hollow and Bragg or OmniGuide fibers. These two kinds of PCOFs differ by the method of building a photonic band gap (PBG) around a capillary hole. The paper is a concise digest of fundamental kinds of singlemode (or low-order mode) COFs and their properties, with an emphasis on applications in two basic fields: instrumentation and telecommunications.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
323-342
Opis fizyczny
Bibliogr. 13 poz., wykr.
Twórcy
autor
- Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, rrom@ise.pw.edu.pl
Bibliografia
- 1. Polymicro Technologies, Capillary Optical Fibers: [www.polymicro.com] (2008.)
- 2. R. Romaniuk, J. Dorosz: Design and fabrication of capillary optical fibers, Technical Report (in Polish), Grant PBZ-MIN-009AT11/2003 (2003-2007), Warsaw University of Technology [www.ise.pw.edu.pl/rrom/kapilary] (2007).
- 3. A. B. Sotsky, L. I. Sotskaya: Modes of capillary optical fibers, Optics Communications, vol. 230, no. 1-3, pp. 67-79 (2003).
- 4. V. Neves, F. S. C. Fernandes: Modal characteristics of W-type and M-type dielectric profile fibres, Microwave and Optics Technology Letters, vol. 22, pp. 355-357 (1998).
- 5. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, P. S. J. Russell; Ultimate low-loss hollow core photonic crystal fibres, Optics Express, 10 January 2005, vol. 13, no. 1, pp. 236-244;
- 6. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. S. J. Russell: "Low loss (1.7 dB/km) hollow core photonic bandgap fiber", in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.
- 7. J. A. West, C. M. Smith, N. F. Borelli, D. C. Allan, K. W. Koch: Surface modes in air-core photonic band-gap fibers, Optics Express, 19 April 2004, vol. 12, no. 8, pp. 1485-1496.
- 8. K. Saitoh, N. A. Mortensen, M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004),
- 9. D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, K. W. Koch: "Surface modes and loss in air-corephotonic bandgap fibers," in Photonic Crystal Materials and Devices, Ali Adibi, Axel Scherer, and Shawn Yu Lin; eds. Proc. SPIE 5000, p. 161-174 (2003)
- 10. R. Romaniuk, Capillary optical fiber - design, fabrication, characterization and application, Bulletin of Polish Academy of Sciences, Technical Sciences, Vol. 56, No. 2, pp. 87-102 (2008).
- 11. OmniGuide [omni-guide.com] (2008).
- 12. Blaze Photonics [blazephotonics.com] (2008).
- 13. Crystal Fibre A/S [crystal-fibre.com] (2008).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0015-0022