Czasopismo
2005
|
Vol. 51, z. 2
|
305--318
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Impact of polarization dependent loss on polarization mode dispersion in single-mode fibre
Języki publikacji
Abstrakty
W niniejszym artykule autor prezentuje model kaskadowy światłowodu jako układu składającego się z kilkudziesięciu segmentów. Model ten jest odpowiedni do rozpatrzenia problemu oddziaływania zjawiska PDL na PMD. Autor na bazie owego modelu przedstawia wyniki symulacji numerycznych. Autor przedstawia proces zmian rozkładu gęstości prawdopodobieństwa różnicowego opóźnienia grupowego w zależności od PDL. Drugim aspektem rozważanym w niniejszym artykule jest zaburzenie ortogonalnosci modów polaryzacyjnych pod wpływem PDL. Na podstawie symulacji numerycznych zostaje przedstawiony stopień degradacji systemu transmisyjnego z PMD pod wpływem niezerowego PDL.
The topic of the article is interdependence of PMD (Polarization Mode Dispersion) and PDL (Polarization Dependent Loss). First of all, the proper mathematical feedback is presented. Description of PMD and PDL by the 2 x 2 Jones complex transmission matrix is provided. Ways of calculating PDL and DGD (Differential Group Delay) out of a matrix are also presented (Jones matrix eigenanalysis JME). After that, the cascade fibre model (model of a fibre that consist of many e.g. 200 pieces) is introduced that reflects all the real system subtleties such as: varying birefringence through changes of temperature and stress, mode coupling and varying of PDL. Then, a set of numerical simulation results (based on the above mentioned model) is presented; these are: DGD probability density functions for different PDL and a plot illustrating the out-of- work time during one-year period as a function of PDL (with fixed PMD). On probability density functions plots the process of evolving distribution function from Maxwellian distribution to a new one due to PDL is shown. The new probability distribution function results in greater probabilities of high DGD values when some amount of PDL is present in the system. On other plots it is shown that linearly increasing PDL of a system produces exponential growth in the amount of out-of-work time during one-year period. The other problem mentioned in the article is the loss of orthogonality of PSP due to the PDL. As an orthogonality measure, a [gamma] coefficient is provided which is a correlation of two PSPs. Then the probability density function of a [gamma] coefficient of a system with PDL is shown. The presented characteristics fits well within the Weibull distribution. At the end the impact of non-orthogonality of PSP on increasing distortions due to PDL on the system with PMD are shown. The distortion manifests with grater probabilities of high DGD than in the case of considering PDL to PMD influence without taking into account the loss of orthogonality of two PSPs. The article outlines the problems which may occur in fibre networks due to the interaction of PMD and PDL and that may not be neglected when introducing high-speed optical networks. It is shown that the measure of average DGD is not sufficient parameter of describing the PMD problem when PDL is taken into consideration.
Czasopismo
Rocznik
Tom
Strony
305--318
Opis fizyczny
Bibliogr. 11 poz., wykr., tab.
Twórcy
autor
- Politechnika Warszawska, Instytut Telekomunikacji, Zakład Systemów Mikrofalowych i Optoelektronicznych, ul. Nowowiejska 15/19, 00-665 Warszawa, maksymiuk@tele.pw.edu.pl
Bibliografia
- 1. International Telecommunication Union (ITU-T): Transmission media characteristics - Characteristics of optical components and subsystems - G.671.
- 2. C. D. Poole, R. E. Wagner: Phenomenological approach to polarization dispersion in long single mode fibers. Electronic Letters, vol. 22, 1986, pp.1029-1030.
- 3. N. Gisin: Statistics of polarization dependent losses. Optics Communications 114, 15 February 1995, pages 399-405.
- 4. F. Ratajczyk: Dwójłomność i polaryzacja optyczna. Oficyna Wydawnicza Politechniki Wrocławskiej, 2000.
- 5. E. Collett: Polarized Light in Fiber Optics. The PolaWave Group 2003, ISBN 0-9677167-1-3.
- 6. B. Huttner, C. Geiser, N. Gissin: Polarization- Induced Distorsions in Optical Fiber Networks with Polarization-Dependent Losses. IEEE Journal of Selected Topics in Quantum Eletronics, vol. 6., no 2, March/April 2000.
- 7. N. Gisin, B. Huttner: Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers. Optics Communications 142, 1 October 1997, pages 119-125.
- 8. J. P. Gordon, H. Kogelnik: PMD fundamentals: Polarization mode dispersion in optical fibers. Contributed by H. Kogelnik, February 2, 2000.
- 9. Ping Lu, Liang Chen, Xiaoyi Bao: Pulse width dependence of polarization mode dispersion and polarization dependent loss for a pulse ant their impacts on pulse broadening. Physics Departments, University Ottawa, 2001.
- 10. N. Gisin: Polarization Mode Dispersion: Definitions, Measurements and Statistics. Group of Applied Physics, University of Geneva.
- 11. Na Yong Kim, Duckey Lee, Hosung Yoon: Limitation of PMD Compensation Due to Plarization-Dependent Loss in High-Speed Optical Transmission Links. IEEE Photonics Technology Letters, vol.14, no. 1, January 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA6-0001-0043