Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 13, No. 3 | 275-288
Tytuł artykułu

Growing a class of fractals based on combination of classical fractals and recursive mathematical series in L-systems

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
L-systems can be used to generate fractals. In this paper L-systems with a standard turtle alphabet are combined with L-systems which emulate simple number sequences. The combination of two such L-systems is achieved by concatenating their axioms as well as merging their rule sets. This can happen in several ways, depending in part on the sequence in which axioms and right-hand sides of rules are concatenated. The purpose of this paper is to combine these two applications of L-systems to generate novel fractals. A turtle interpretation is applied to the yield of the generated hybrid L-systems resulting in new fractal images.
Słowa kluczowe
Wydawca

Rocznik
Strony
275-288
Opis fizyczny
Bibliogr. 11 poz., il.
Twórcy
autor
  • Department of Computer Science, Utkal University, Vani Vihar, Bhubaneswar, Orissa, India, akbisoi@sancharnet.in
autor
Bibliografia
  • [1] Lindenmayer A. : Mathematical Models for Cellular Interactions in Development, (two parts). J.Theor. Biol., 18, 280-315, 1968.
  • [2] Papert S.: Mindstorms: Children, Computers, and Powerful Ideas, Basic Books. New York, 1980.
  • [3] Mandelbrot B. B.: The Fractal Geometry of Nature. The W. H. Freeman, San Fransisco, 1982.
  • [4] Prusinkiewicz P.: Graphical applications of L-systems. Proc. of Graphics Interface 86 and Vision Interface 86, M. Wein and E. M. Kidd, Eds. Vancover, B.C, 247-253, 1986.
  • [5] West B. J., Goldberger A. L.: Physiology in Fractal Dimensions. American Scientist, Vol 75, pp. 345-365, 1987.
  • [6] Prusinkiewicz P., Lindenmayer A. : The Algorithmic Beauty of Plants. Springer Verlag, 1991.
  • [7] Culik II, K., Dube, S.: L-systems and Mutually Recursive Function Systems. Acta Informat., 30, 279-302, 1993.
  • [8] Casey S. D., Reingold N. F.: Self-Similar Fractal Sets: Theory and Procedure. IEEE Computer Graphics & Applications, 14, 73-83, 1994.
  • [9] Alfonseca M., Ortega A.: A Study of Representation of Fractal Curves by L Systems and their equivalences. IBM J. Res. Develop., Vol. 41, November, 1997.
  • [10] http://www.geocities.com/Silicon Valley/Campus/1519/, 1998.
  • [11] Alfonseca M., Ortega A.: Determination of Fractal Dimensions from Equivalent L-systems. IBM J. Res. & Dev., 45(6), 797-805, 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0014-0086
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.