Warianty tytułu
Języki publikacji
Abstrakty
Stents are playing an increasing role in the treatment of arterial stenoses and aneurysms. The goal of this work is to help the clinician in the pre-operative choice of the stent length and diameter. This is done by embedding a model of the stent within a real 3D vascular image. Two models are used. First, a simple geometrical model, composed of a set of circles or polygons stacked along the vessel centerline, is used to simulate the introduction and the deployment of the stent. Second, a simplex-mesh model with an adapted cylindrical constraint is used to represent the stent surface. Another axially constrained simplex-mesh deformable model is used to reconstruct a 3D vessel wall. We simulate the interaction between the vessel wall and the stent by imposing the condition that the model of the vessel locally fits the shape of the deployed stent model. Preliminary quantitative results of the vessel reconstruction accuracy are given.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
235-248
Opis fizyczny
Bibliogr. 22 poz., il.
Twórcy
autor
- CREATIS, CNRS Research Unit (UMR 5515), U630 INSERM, Lyon, France
- Grupo de Ingeniería Biomédica, Departamento de Ingeniería de Sistemas y Computación, Universidad de los Andes, Bogotá, Colombia
autor
- 13S, CNRS Research Unit (UMR 6070), Nice Sophia Antipolis, France
autor
- CREATIS, CNRS Research Unit (UMR 5515), U630 INSERM, Lyon, France, maciej.orkisz@creatis.insa-lyon.fr
Bibliografia
- [1] Bloomenthal J., Wyvill B.: Interactive techniques for implicit modeling. Computer Graphics, 24(2), 109-116, 1990.
- [2] Douek P. C., Revel D., Chazel S., Falise B., Villard J., Amiel M.: Fast MR angiography of the aortoiliac arteries and arteries of the lower extremity: value of bolus-enhanced, whole-volume subtraction technique. American Journal of Radiology, (165), 431-437, 1995.
- [3] McInerney T., Terzopoulos D.ps: Deformable models in medical image analysis: a survey. Medical Image Analysis, 1(2), 91-108. TORONTO-004, 1996.
- [4] Montagnat J., Delingette H.: A Hybrid Framework for Surface Registration and Deformable Models. Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 1041-1046, San Juan, Puerto Rico, 1997.
- [5] Abdoulaev G., Cadeddu S., Delussu G., Donizelli M., Fromaggia L., Gianchetti A., Gobbetti E., Leone A., Manzi C., Pili P., Scheinine A., Tuveri M., Varone A., Veneziani A., Zanetti G., Zorcolo A. ViVa: The Virtual Vascular project. IEEE Transactions on Information Technology in Biomedicine, 22(4), 1998.
- [6] Hoogeveen R., Bakker C., Viergever, M.: Limits to the accuracy of vessel diameter measurement in MR Angiography. Journal on Magnetic Resonance Imaging, 8(6), 1228-1235, 1998.
- [7] Montagnat J., Delingette H.: Globally constrained deformable models for 3D object reconstruction. Signal Processing, 71(2), 173-186, 1998.
- [8] Delingette H. General Object Reconstruction based on Simplex Meshes. International Journal of Computer Vision, 32(2), 111-146, 1999.
- [9] Stern C., Wildermuth S., Weissmann J., Stucki P., Hilfiker P., Debatin J. F.: Predictive medicine: Computational techniques in therapeutic decision-making. In Computer Assisted Radiology and Surgery (CARS), pp. 176-180, Paris, France, 1999.
- [10] Taylor C., Draney M., Ku J., Parker D., Steele B., Wang K., Zarins C.: Predictive medicine: Computational techniques in therapeutic decision-making. Computer Aided Surgery, (4), 231-247, 1999.
- [11] Wang K., Dutton R., Taylor C.: Improving geometric model construction for blood flow modeling. IEEE Engineering in Medicine and Biology, 18(6), 33-39, 1999.
- [12] Dumoulin C., Cochelin B.: Mechanical behaviour modelling of balloon-expandable stents. Journal of Biomechanics, 33, 1461-1470, 2000.
- [13] Hernández-Hoyos M., Anwander A., Orkisz M., Roux J. P., Douek P. C., Magnin I. E.: A Deformable Vessel Model with Single Point Initialization for Segmentation, Quantification and Visualization of Blood Vessels in 3D MRA. In Medical Image Computer and Computer Assisted Intervention (MICCAI), pp. 735-745, Pittsburgh, PA, USA, 2000.
- [14] Wentzel J., Whelan D., Van Der Giessen W., Van Beusekom H., Andhyiswara I., Serruys P., Slager C., Krams R.: Coronary stent implantation changes 3D vessel geometry and 3D shear stress distribution. Journal of Biomechanics, 33, 1287-1295, 2000.
- [15] Zorcolo A., Gobbetti E., Zanetti G., Tuveri M.: A Volumetric Virtual Environment for Catheter Insertion Simulation. In Eurograhics Workshop on Virtual Enviroments (EGVE), Amsterdam, The Netherlands, 2000.
- [16] Cebral J. R., Lohner R., Soto O., Choyke P. L., Yim P. J.: Patient-Specific Simulation of Carotid Artery Stenting Using Computational Fluid Dynamics. In Medical Image Computer and Computer Assisted Intervention (MICCAI), pp. 153-160, Utrecht, The Netherlands, 2001.
- [17] Montagnat J., Delingette H., Ayache N.: A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing, 19(14), 1023-1040, 2001.
- [18] Pham Q. C., Vincent F., Clarysse P., Croisille P., Magnin I. E.: A FEM-based deformable model for the 3D segmentation and tracking of the heart in cardiac MRI. In International Symposium on Image and Signal Processing and Analysis, pp. 250-254, Pula, Croatia, 2001.
- [19] Wilson N., Wang K., Dutton R. W., Taylor C.: A Software Framework for Creating Patient Specific Geometric Models from Medical Imaging Data for Simulation Based Medical Planning of Vascular Surgery. In Medical Image Computer and Computer Assisted Intervention (MICCAI), pp. 449-456, Utrecht, The Netherlands, 2001.
- [20] Yim P. J., Cebral J. R., Mullick R., Marcos H. B., Choyke P. L.: Vessel Surface Reconstruction With a Tubular Deformable Model. IEEE Transactions on Medical Imaging, 20(10),1411-1421, 2001.
- [21] Hernández-Hoyos M.: Segmentation anisotrope 3D pour la quantification en imagerie vasculaire par résonance magnétique. PhD thesis, INSA de Lyon, France, 2002.
- [22] Hernández-Hoyos M., Orkisz M., Puech P., Mansard C., Douek P. C., Magnin I. E. Computer-assisted analysis of three-dimensional angiograms. RadioGraphics, 22, 421-436, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0014-0083