Czasopismo
2003
|
Vol. 11, No. 3
|
253-259
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
The Fourth Scientific Symposium on Image Processing Technology. TPO 2002 ; (21.11-23.11.2002 ; Serock, Poland)
Języki publikacji
Abstrakty
Increasing application of non-invasive medical techniques (like stereotactic radiosurgery) generates a high demand for modern image processing algorithms. Image registration and segmentation are the two essential examples of this. The algorithms need to be reasonably fast, reliable, accurate, and highly automated. Information theory provides a means to create such systems. In this paper we present thresholding segmentation using image entropy and a registration technique based on maximization of mutual information. Then we show some experimental results using real-world computed tomography (CT) and medical resonance imaging (MRI) data.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
253-259
Opis fizyczny
Bibliogr. 16 poz., fot., rys., tab., wykr.
Twórcy
autor
- Laboratory of Information Technology, University of Maria Curie-Skłodowska, 5 Curie-Skłodowskiej Sg., 20-031 Lublin, Poland, karol.kuczynski@umcs.lublin.pl
autor
- Laboratory of Information Technology, University of Maria Curie-Skłodowska, 5 Curie-Skłodowskiej Sg., 20-031 Lublin, Poland
Bibliografia
- 1. J.P. Homak, The Basics of MRI, http://www.cis.rit.edu/htbooks/mri, 2000.
- 2. J. Rogowska, "Overview and fundamentals of medical image segmentation", in Handbook of Medical Imaging, Processing and Analysis, Academic Press, London, 2000.
- 3. T. Cover and J. Thomas, Elements of Information Theory, Wiley-Interscience Publication, New York, 1991.
- 4. C.E. Shannon, "A mathematical theory of communication", The Bell System Technical Journal 27, 379-423, 623-656 (1948).
- 5. C. Studholme, D.L.G. Hill, and D.J. Hawkes, "An overlap invariant measure of 3D image alignment", Pattern Recognition 32, No 1 (1998).
- 6. E.D. Jansing, T.A. Albert, and D.L. Chenoweth, "Two-dimensional entropic segmentation", Pattern Recognition Letters 20, 329-336 (1999).
- 7. A.D. Brink, "Using spatial information as an aid to maximum entropy image threshold selection", Pattern Recognition Letters 17, 29-36 (1996).
- 8. J. Skilling, "Theory of maximum entropy image reconstruction", in Maximum Entropy and Bayesian Methods in Applied Statistics, edited by J.H. Justice, Cambridge University Press, Cambridge, 1986.
- 9. J.B. Maintz and M.A. Viergever, "A survey of medical image registration", Medical Image Analysis 2, 1-36 (1998).
- 10. K. Kuczyński and P. Mikołajczak, "Mutual information based registration of brain images", Journal of Medical lnformatics & Technologies 3, 213-219 (2002).
- 11. P.A. Viola, Alignment by Maximisation of Mutual Information, A.I. Technical Report No. 1548, MIT 1995.
- 12. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C++, Cambridge University Press, Cambridge, 2002.
- 13. D.L.G. Hill, Combination of 3D Medical lmages from Multiple Modalities, University of London, London, 1993.
- 14. S. Vitulano, C. Di Roberto, and M. Nappi, "Different methods to segment biomedical images", Pattern Recognition Letters 18, 1125-1131 (1997).
- 15. J.N. Kapur, P.K. Sahoo, and A.K.C. Wong, "A new method for grey level picture thresholding using entropy of the histogram", Computer Vision, Graphics and Image Processing 29, 273-285 (1985).
- 16. P.K. Sahoo, D.W. Slaaf, and T.A. Albert, "Threshold selection using a minimal entropy difference", Optical Engineering 36, 1976-1981 (1997).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0007-0045