Czasopismo
2003
|
Vol. 11, No. 1
|
1-5
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper discusses key issues related to the quantum dot infrared photodetector (QDIP). These are the normal incidence response, the dark current, and the responsivity and detectivity. We attempt to address the following questions of what is QDIP' s potential, what is lacking, and what is needed to make the device interesing for practical applications. It is argued that so for the present QDIP devices have not fully demonstrated the potential advantages. Representative experimental results are compared with characteristics of quantum well infrared photodetectors. Areas that need improvements are pointed out.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1-5
Opis fizyczny
Bibliogr. 26 poz., il.
Twórcy
autor
- Institute for Microstructural Sciences, National Research Council, Ottawa K1A OR6, Canada, h.c.liu@nrc.ca
Bibliografia
- 1. H.C. Liu, "Quantum well infrared photodetector physics and novel devices", in Semiconductors and Semimetals, Vol. 62, pp. 126-196, edited by H. C. Liu and F. Capasso, Academic Press, San Diego, 2000.
- 2. S.D. Gunapala and S.V. Bandara, "Quantum well infrared photodetector focal plane arrays," in Semiconductors and Semimetals, Vol. 62, pp. 197-282, edited by H. C. Liu and F. Capasso, Academic Press, San Diego, 2000.
- 3. K.W. Berryman, S.A. Lyon, and M. Segev, "Mid-infrared photoconductivity in self-organized InAs quantum dots", Appl. Phys. Lett. 70, 1861-1863 (1997).
- 4. J. Phillips, K. Kamath, and P. Bhattacharya, "Far-infrared photoconductivity in self-organized InAs quantum dots", Appl. Phys . Lett. 72, 2020-2022 (1998).
- 5. D. Pan, E. Towe, and S. Kennerly, "Normal incidence intersubband (ln,Ga)As/GaAs quantum dot infrared photodetectors", Appl. Phys. Lett. 73, 1937-1939 (1998).
- 6. S.J. Xu, S.J. Chua, T. Mei, X.C. Wang, X.H. Zhang, G. Karunasiri, W.J. Fan, C.H. Wang, J. Jiang, S. Wang, and X.G. Xie, :Characteristics of InGaAs quantum dot infrared photodetectors", Appl. Phys. Lett. 73, 3153-3155 (1998).
- 7. L. Chu, A. Zrenner, G. Bohm, and G. Abstreiter, "Normal-incident intersubband photocurrent spectroscopy on lnAs/GaAs quantum dots", Appl. Phys. Lett. 75, 3599-3601 (1999).
- 8. N. Horiguchi, T. Futatsugi, Y. Nakata, N. Yokoyama, T. Mankad, and P.M. Petroff, "Quantum dot infrared photodetector using modulation doped InAs self-assembled quantum dots", Jpn. J. Appl. Phys. 38, 2559-2561 (1999).
- 9. L. Chu, A. Zrenner, G. Bohm, and G. Abstreiter, "Lateral intersubbsnd photocurrent spectroscopy on InAs/GaAs quantum dots", Appl. Phys. Lett. 76, 1944-1946 (2000).
- 10. AD. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, "High-detectivity, normal-incidence, mid-infrared (λ~4 μm) lnAs/GaAs quantum-dot detector operating at 150 K", Appl. Phys. Lett 70, 421-423 (2001).
- 11. S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, J.M. Gerard, "Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots", Appl. Phys. Lett. 78, 2327 (2001).
- 12. H.C. Liu, M. Gao, J. McCafirey, Z.R. Wasilewski, and S. Fafard, "Quantum dot infrared photodetectors", Appl. Phys. Lett. 78, 79-81 (2001).
- 13. S. Raghavan, P. Potella, S. Stintz, B. Fuchs, S. Krishna, C. Morath, D.A. Cardimona, and S.W. Kennerly, "High-responsivity, normal-incidence long-wave (λ~7.2 μm) lnAs/In0.15 Ga0 85 As dots-in-a-well detector", Appl. Phys. Lett. 81, 1369-1371 (2002).
- 14. H.C. Liu, J. Li, E.R. Brown, K.A. Mclntosb, K.B. Nichols, and M.J. Manfra, "Quantum well intersubband heterodyne infrared detection up to 82 GHz", Appl. Phys. Lett. 67, 1594-1596 (1995).
- 15. H.C. Liu, J. Li, M. Buchanan, and Z.R. Wasilewski, "High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique", IEEE J. Quantum Electron. 32, 1024-1028 (1996).
- 16. R. Paiella, F. Capasso, C. Gmachi, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and H.C. Liu, Science 290, 1739 (2000).
- 17. H.C. Liu, M. Buchanan, and Z.R. Wasilewski, "How good is the polarization selection rule for intersubband transitions?", Appl. Phys. Lett. 72, 1682-1684 (1998).
- 18. A. Weber, O. Gauthier-Lafaye, F.H. Julien, J. Brault. M. Gendry, Y. Desieres, and T. Benyattou, "Strong normal-in-cidence infrared absorption in self-organized InAs/lnAlAs quantum dots grown on InP(001)", Appl. Phys. Lett. 74, 413-415 (1999).
- 19. V. Ryzhii, "The theory of quantum-dot infrared phototransistors", Semicond. Sci. Technol. 11, 759-765 (1996).
- 20. V. Ryzhii, V. Pipa, I. Khmyrova, V. Mitin, and M. Willander, "Dark current in quantum dot infrared photodetectors", Jpn. J. Appl. Phys. 39, L1283-L1285 (2000).
- 21. U. Bockelmann and G. Bastard, "Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases", Phys. Rev. B42, 8947-8951 (1990).
- 22. J. Urayama, T.B. Norris, J. Singh, and P. Bhattacharya, "Temperature dependent carrier dynamics in InGaAs self-assembled quantum dots", Phys. Rev. Lett. 86, 4930 (2001).
- 23. V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, "On the detectivity of quantum-dot infrared photodetectors", Appl. Phys. Lett. 78, 3522-3525 (2001).
- 24. S.W. Lee, K. Hirakawa, and Y. Shimada, Physica E7, 499 (2000).
- 25. J.W. Kim, J.E. Oh, S.C. Hong, C.H. Park, and T.K. Yoo, "Room temperature far infrared (8~1O μm) photodetectors using self-assembled InAs quantum dots with high detectivity", IEEE Elect. Dev. Lett. 21, 329-331 (2000).
- 26. L. Chu, A. Zrenner, M. Bichler, and G. Abstreiter, "Quantum-dot infrared photodetector with lateral carrier transport", Appl. Phys. Lett. 79, 2249-2251 (2001).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0006-0119