Warianty tytułu
Języki publikacji
Abstrakty
In order to adjust the highly controllable and optimum growth conditions, the multi-step interrupted-growth MBE processes were performed to deposit a series of GaAs/Al₀.₄₅Ga₀.₅₅As QCL structures. The additional calibrations of MBE system were carried out during the designed growth interruptions. This solution was combined with a relatively low growth rate of active region layers, in order to suppress the negative effects of elemental flux instabilities. As a result, the fabricated QCL structures have yielded devices operating with peak optical power of ~12 mW at room temperature. That is a better result than was obtained for comparable structures deposited with a growth rate kept constant, and with the only initial calibrations performed just before the epitaxy of the overall structure.
Czasopismo
Rocznik
Tom
Strony
239-246
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
autor
autor
autor
autor
autor
- Institute of Electron Technology, 32/46 Al. Lotników, 02-668, Warsaw, Poland, kosiel@ite.waw.pl
Bibliografia
- 1. S. Hoefling, R. Kallweit, J. Seufert, J. Koeth, J. P. Reithmaier, and A. Forchel, “Reduction of the threshold current density of GaAs/AlGaAs quantum cascade lasers by optimized injector doping and growth conditions”, J. Cryst. Growth 278, 775-779 (2005).
- 2. H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Koehler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers”, J. Cryst. Growth 278, 756-764 (2005).
- 3. K. Kosiel, J. Kubacka-Traczyk, P. Karbownik, A. Szerling, J. Muszalski, M. Bugajski, P. Romanowski, J. Gaca, and M. Wójcik, “Molecular-beam epitaxy growth and characterization of mid-infrared quantum cascade laser structures”, Microelectr. J. 40, 565-569, (2009).
- 4. K. Kosiel, M. Bugajski, A. Szerling, J. Kubacka-Traczyk, P. Karbownik, E. Pruszyńska-Karbownik, J. Muszalski, A. Łaszcz, P. Romanowski, M. Wasiak, W. Nakwaski, I. Makarowa, and P. Perlin, “77 K operation of AlGaAs/GaAs quantum cascade laser at 9 um”, Photonics Letters of Poland 1, 16-18 (2009).
- 5. K. Kosiel, A. Szerling, J. Kubacka-Traczyk, P. Karbownik, E. Pruszyńska-Karbownik, and M. Bugajski, “Molecular Beam Epitaxy Growth for Quantum Cascade Lasers”, Acta Phys. Pol. A116, 806-813 (2009).
- 6. A. Szerling, P. Karbownik, K. Kosiel, J. Kubacka-Traczyk, E. Pruszyńska-Karbownik, M. Płuska, and M. Bugajski, “Mid-Infrared GaAs/AlGaAs Quantum Cascade Lasers Technology”, Acta Phys. Pol. A116, S45-S48 (2009).
- 7. K. Kosiel, A. Szerling, P. Karbownik, J. Kubacka-Traczyk, E. Pruszyńska-Karbownik, A. Trajnerowicz, and M. Bugajski, “Development of (~9.4 um) GaAs - based quantum cascade lasers”, IEEE Proc. NATO Advanced Research Workshop on Terahertz and Mid Infrared Radiation: Basic Research and Applications TERA-MIR 2009, Turunc-Marmaris, Turkey, 43-44 (2009).
- 8. A. Szerling, P. Karbownik, E. Pruszyńska-Karbownik, K. Kosiel, M. Bugajski, S. Adhi, T. Ochalski, and G. Huyet, “Electrical and optical characterisation of (~9.4 ?m) GaAs-based quantum cascade lasers”, IEEE Proc. NATO Advanced Research Workshop on Terahertz and Mid Infrared Radiation: Basic Research and Applications TERA-MIR2009, Turunc-Marmaris, 71-71 (2009).
- 9. K. Kosiel, A. Szerling, M. Bugajski, P. Karbownik, J. Kubacka-Traczyk, I. Sankowska, E. Pruszyńska-Karbownik, A. Trajnerowicz, A. Wójcik-Jedlińska, M. Wasiak, D. Pierścińska, K. Pierściński, S. Adhi, T. Ochalski, and G. Huyet,“Development of (~9.4 um) GaAs-Based Quantum Cascade Lasers Operating at the Room Temperature”, Terahertz and Mid Infrared Radiation, pp. 91-100, edited by M. F. F. Pereira and O. Shulika, Springer, 2011.
- 10. J. Alton, S. Barbieri, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “Low threshold superlattice quantum-cascade laser emitting at = 103 and operating up to 70 K in continuous wave”, SPIE Proc. 5354, 129-138 (2004.)
- 11. K. Kosiel, “MBE-Technology for nanoelectronics”, Vacuum 82, 951-955 (2008).
- 12. C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, and M. Beck, “Low-loss Al-free waveguides for unipolar semiconductor lasers”, Appl. Phys. Lett. 75, 3911-3913, (1999).
- 13. H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K operation of a GaAs-based quantum-cascade laser at λ 9 um”, Appl. Phys. Lett. 78, 3529-3531 (2001).
- 14. C. Sirtori, “GaAs Quantum Cascade Lasers-Fundamentals and Performance”, EDP Sciences 7, (2002).
- 15. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “GaAs/AlxGa1-xAs quantum cascade lasers”, Appl. Phys. Lett. 73, 3486-3488 (1998).
- 16. A. Wójcik-Jedlińska, M. Wasiak, K. Kosiel, and M. Bugajski, “Photoluminescence characterization of algaas/gaas test superlattices used for optimization of quantum cascade laser technology”, Opt. Appl. 39, 967-974 (2009).
- 17. M. Motyka, G. Sęk, F. Janiak, K. Ryczko, J. Misiewicz, K. Kosiel, and M. Bugajski, “Photoreflectance study of Al0.45Ga0.55As/GaAs superlattice: optical transitions at the Miniband and points”, Opt. Appl. 39, 897-902 (2009).
- 18. M. Motyka, F. Janiak, J. Misiewicz, M. Wasiak, K. Kosiel, and M. Bugajski, “Determination of energy difference and width of minibans in GaAs/AlGaAs superlattices by using Fourier transform photoreflectance and photoluminescence”, Opto-Electron. Rev. 19, 151-154, (2011).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0053-0005