Czasopismo
2012
|
Vol. 20, No. 3
|
216-225
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the optimized K-means (OKM) algorithm that can homogenously segment an image into regions of interest with the capability of avoiding the dead centre and trapped centre at local minima phenomena. Despite the fact that the previous improvements of the conventional K-means (KM) algorithm could significantly reduce or avoid the former problem, the latter problem could only be avoided by those algorithms, if an appropriate initial value is assigned to all clusters. In this study the modification on the hard membership concept as employed by the conventional KM algorithm is considered. As the process of a pixel is assigned to its associate cluster, if the pixel has equal distance to two or more adjacent cluster centres, the pixel will be assigned to the cluster with null (e. g., no members) or to the cluster with a lower fitness value. The qualitative and quantitative analyses have been performed to investigate the robustness of the proposed algorithm. It is concluded that from the experimental results, the new approach is effective to avoid dead centre and trapped centre at local minima which leads to producing better and more homogenous segmented images.
Czasopismo
Rocznik
Tom
Strony
216-225
Opis fizyczny
Bibliogr. 17 poz., il., tab.
Twórcy
autor
autor
- School of Electrical & Electronic Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia, ashidi@eng.usm.my
Bibliografia
- 1. M. P. Segundo, L. Silva, O. R. P. Bellon, and C. C. Queirolo, “Automatic face segmentation and facial landmark detection in range images”, IEEE T. Syst. Man Cy. B40, 1319-1330 (2010).
- 2. K. Nickel and R. Stiefelhagen, “Visual recognition of pointing gestures for human-robot interaction”, Image Vision Comput. 25, 1875-1884 (2007).
- 3. Y. Hou, Y. Yang, N. Rao, X. Lun, and J. Lan, “Mixture model and Markov random field-based remote sensing image unsupervised clustering method”, Opto-Electron. Rev. 19, 83–88 (2011).
- 4. S. N. Sulaiman and N. A. M. Isa, “Adaptive fuzzy-K-means clustering algorithm for image segmentation”, IEEE T. Consum. Electr. 56, 2661-2668 (2010).
- 5. S. N. Sulaiman and N. A. M. Isa, “Denoising-based clustering algorithms for segmentation of low level salt-and-pepper noise-corrupted images”, IEEE T. Consum. Electr. 56, 2702-2710 (2010).
- 6. N. A. M. Isa, “Automated edge detection technique for Pap smear images using moving k-means clustering and modified seed based region growing algorithm”, Int. J. Comput., Internet Manage. 13, 45–59 (2005).
- 7. Y. Xing, Q. Chaudry, C. Shen, K. Y. Kong, H. E. Zhau, L. W. Chung, J. A. Petros, R. M. O’Regan, M. V. Yezhelyev, J. W. Simons, M. D. Wang, and S. Nie, “Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry”, Nat. Protoc. 2, 1152-1165 (2007).
- 8. J.-W Jeong, D. C. Shin, S. H. Do, and V. Z. Marmarelis, “Segmentation methodology for automated classification and differentiation of soft tissues in multiband images of high-resolution ultrasonic transmission tomography”, IEEE T. Med. Imaging 25, 1068-1078 (2006).
- 9. N. A. M. Isa, M. Y. Mashor, and N. H. Othman, “An automated cervical pre-cancerous diagnostic system”, Artif. Intell. Med. 42, 1-11 (2008).
- 10. R. Nagarajan, “Intensity-based segmentation of microarray images”, IEEE T. Med. Imaging 22, 882-889 (2003).
- 11. R. J. Hathaway, J. C. Bezdek, and Y. Hu, “Generalized fuzzy c-means clustering strategies using Lp norm distances”, IEEE T. Fuzzy Syst. 8, 576–582 (2002).
- 12. M. Mashor, “Hybrid training algorithm for RBF network”, Int. J. Comput., Internet Manage. 8, 50-65 (2000).
- 13. N. A. M. Isa, S. A. Salamah, and U. K. Ngah, “Adaptive fuzzy moving K-means clustering algorithm for image segmentation”, IEEE T. Consum. Electr. 55, 2145–2153 (2010).
- 14. F. U. Siddiqui and N. A. M. Isa, “Enhanced moving K-means (EMKM) algorithm for image segmentation”, IEEE T. Consum. Electr. 57, 833-841 (2011).
- 15. B. Leibe, K. Mikolajczyk, and B. Schiele, “Efficient clustering and matching for object class recognition”, Proc. BMVC, 789-798 (2006).
- 16. L. Jianqing and Y. Yee-Hong, “Multiresolution colour image segmentation”, IEEE T. Pattern Anal. 16, 689–700 (1994).
- 17. M. Borsotti, P. Campadelli, and R. Schettini, “Quantitative evaluation of colour image segmentation results1”, Pattern Recogn. Lett. 19, 741-747 (1998).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0053-0003