Czasopismo
2012
|
Vol. 20, No. 3
|
201-206
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of numerical analyses of optical structures realized in the form of planar waveguides made of materials with high values of the refractive index n ≈ 1.85. The analysed structures consist of a waveguide and input-output systems. Input-output couplers are realized in the form of prisms as well as Bragg's grating couplers. Numerical investigations were carried out by applying the finite difference time domain (FDTD) method.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
201-206
Opis fizyczny
Bibliogr. 19 poz., wykr.
Twórcy
autor
autor
- Department of Optoelectronics, Silesian University of Technology, 2 Akademicka Str., 44–100 Gliwice, Poland, Tadeusz.Pustelny@polsl.pl
Bibliografia
- 1. T. Pustelny, Physical and Technical Aspects of Optoelectronic Sensors, SUT, Gliwice, 2005.
- 2. P. V. Lambeck, “Integrated optical sensors for the chemical domain”, Meas. Sci. Technol. 17, 93-116 (2006).
- 3. D. L. Lee, Electromagnetic Principles of Integrated Optics, Wiley & Sons, New York, 1986.
- 4. T. Pustelny and M. Grabka, “Numerical investigation of the photonic-crystal fibres with suspended core”, Acta Phys. Pol. A116, 385-388 (2009).
- 5. Z. Zhang, S. G. Tantawi, and R. D. Ruth, “Distributed grating-assisted coupler for optical all-dielectric electron accelerator”, Phys. Rev. Spec. Top. AC 8, 302-306 (2005).
- 6. P. Struk, T. Pustelny, K. Gut, K. Gołaszewska, E. Kamińska, M. Ekielski, I. Pasternak, E. Łusakowska, and A. Piotrowska, “Planar optical waveguides based on thin ZnO layers”, Acta Phys. Pol. A116, 414-418, (2009).
- 7. C. Kopp and A. Chelnokov, “Fiber grating couplers for silicon nanophotonic circuits: design modelling methodology and fabrication tolerances”, Opt. Commun. 282, 4242-4248, (2009).
- 8. P. Struk, T. Pustelny, B. Pustelny, K. Gołaszewska, E. Kamińska, A. Piotrowska, M. Borysiewicz, and M. Ekielski, “Zinc oxide semiconductor for photonics structures applications”, Acta Phys. Pol. A118, 1242-1245 (2010).
- 9. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE T. Antenn. Propag. 14, 302-307 (1966).
- 10. F. Kong, K. Li, and X. Liu, “Accurate analysis of planar optical waveguide devices using higher-order FDTD scheme”, Opt. Express 14, 11796-11803 (2006).
- 11. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equation, Wiley & Sons, New York, 2008.
- 12. OptiFDTD Technical Background and Tutorials - Finite Difference Time Domain Photonics Simulation Software, Optiwave Systems Inc., Ottawa, 2007.
- 13. R. G. Hunsperger, Integrated Optics Theory and Technology, Springer, Berlin, 2009.
- 14. C. Tyszkiewicz and T. Pustelny “Differential interferometry in planar waveguide structures with ferronematic layer”, Opt. Appl. 34, 507-514 (2004).
- 15. P. Struk and T. Pustelny, “Design and numerical analyses of the planar grating couplers”, Bull. Pol. Acad. Sci.-Te. 58, 509-512 (2010).
- 16. P. Struk, T. Pustelny, and Z. Opilski, “Researches on the spectral transmittance of zinc oxide ZnO semiconductor layers”, Acta Phys. Pol. A118, 1239-1241 (2010).
- 17. H. V. Baghdasaryan, T. M. Knyazyan, T. H. Baghdasaryan, B. Witzigmann, and F. Roemer, “Absorption loss influence on optical characteristics of multilayer distributed Bragg reflector: wavelength-scale analysis by the method of single expression” Opto-Electron. Rev. 18, 438-445 (2010).
- 18. T. Váry and P. Markoš, “Propagation of surface plasmon polaritons through gradient index and periodic structures”, Opto-Electron. Rev. 18, 400-407 (2010).
- 19. P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with greting couplers based on ZnO”, Opto-Electron. Rev. 19, 462-467 (2011).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0053-0001