Warianty tytułu
The role of optoelectronics in the future Internet. Pt. 3
Języki publikacji
Abstrakty
Elementy, układy, systemy i sygnały optoelektroniczne, obok analogicznych składników elektronicznych oraz wspólnych warstw programistycznych, są 'budulcem' współczesnej sieci Internet. Udział fotoniki w budowie warstwy fizycznej przyszłego Internetu będzie najprawdopodobniej ulegać zwiększeniu. Fotonika prowadzi obecnie do lepszego wykorzystania pasma (zwiększenie efektywności spektralnej mierzonej w Bit/s/Hz), zwiększenia szybkości transmisji sygnałów cyfrowych (z Gbps na Tbps, a nawet aż do Pbps), zwiększenia odległości transmisyjnej bez regeneracji sygnału (w skompensowanych dyspersyjnie światłowodach aktywnych), zwiększenia sprawności energetycznej mierzonej w W/Gbps, itp. W przyszłości fotonika może prowadzić do budowy całkowicie optycznych sieci przezroczystych a przez to do znacznego zwiększenia pasma i niezawodności transmisji. Przypuszcza się, że fotonika (z biochemią, elektroniką i mechatroniką) może utworzyć psychologiczny i fizjologiczny interfejs człowieka do przyszłej sieci globalnej. Rozpatrzono optyczne wersje zwielokrotniania transmisji, możliwe bez konwersji O/E/O: TDM-OTDM, FDM-CO-OFDM, CDM-OCDM-OCDMA, WDM-DWDM.
Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability, it is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.
Słowa kluczowe
Rocznik
Tom
Strony
143-147
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
- Politechnika Warszawska, Instytut Systemów Elektronicznych
Bibliografia
- [1] Tselentis G., A. Galis, et al.: (Editors), Towards the Future Internet - Emerging Trends from European Research. IOS Press, Amsterdam 2010.
- [2] Romaniuk R.: Optyczny Internet Terabitowy. KEIT PAN, Warszawa 2001.
- [3] Romaniuk R.: DWDM - technologia, pomiary, eksploatacja, rozwój. KEIT PAN, Warszawa 2001.
- [4] Romaniuk R.: Miernictwo swiatłowodowe. KEIT PAN, Warszawa 2001.
- [5] Border Gateway Protocol (protokół Bramy Brzegowej) en.wikipedia.org/wiki/BGP.
- [6] Duelk M.: Next generation 100 G Ethernet. ECOC, paper Tu3.1.2, Glasgow Scotland 2005.
- [7] Ambrosia J. D', D. Law, M. Nowell: 40 Gigabit Ethernet and 100 Gigabit Ethernet technology overview. Ethernet Alliance, November 2008.
- [8] Web pages: Force 10 Networks, 3COM, Cisco Systems, Foundry Networks, Netiron, Reflex GbE InterBoard.
- [9] Ma Y., Q. Yang, Y. Tang, S. Chen, W. Shieh: 1-Tb/s single channel coherent optical OFDM transmission over 600-km SSMF fiber with sub wavelength bandwidth access. Optics Express 17 (11), 2009, pp. 9421-9427.
- [10] NTT, 69, 1 Tb/s (432x171 Gb/s) C and extended L band transmission over 240 km usingPDM-16-QAM modulation and digital coherent detection, OFC/NFOEC March 2010, USA, post deadline paper.
- [11] Weber H-G., R. Ludwig: Ultra-high-speed OTDM transmission technology. Ch.6 in Optical Fiber Telecommunications V B: Systems and Networks, ISBN 978-0-12-374172-1, 2008 Elsevier.
- [12] Ly-Cagnon D. S., S. Tsukamoto. K. Katoh, K. Kikuchi: Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation. J. Lightwave Technol. 24, pp. 12-21, 2006.
- [13] Ip E., A. P. Lau, D. J. Barros, J. M. Kahn: Coherent detection in optical fiber systems. Opt. Express 16. pp. 753-791, 2008.
- [14] Savory S. J., G. Gavioli, R. I. Kitley, P. Bayvel: Electronic compensation of chromatic dispersion using a digital coherent receiver. Opt. Express 15, pp. 2120-2126, 2008.
- [15] Sun H., K. Wu, K. Roberts: Real-time measurements of a 40 Gb/s coherent system. Opt. Express 16, pp. 873-879, 2008.
- [16] CERN; White Rabbit.
- [17] IEEE standard of Synchronous Ethernet.
- [18] Shieh W., H. Bao, Y. Tang: Cohernet optical OFDM: theory and design. Optics Express 16 (2), 2008, pp. 841-859.
- [19] Shieh W., Q. Yang, Y. Ma: 107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing. Optics Express 16 (9), 2008, pp. 6378-6386.
- [20] Shieh W., C. Athaudage: Coherent optical frequency division multiplexing. Electron Lett. 42 (9), 2006, pp. 587-588.
- [21] Kilper D .C., R. Bach, D. J. BIumentahl, D. Einstein, T. Landotsi, I. Ostar, M. Preiss, A. E. Willner: Optical performance monitoring. J. Lightwave Technol, 22 (1), pp. 294-304 (2004).
- [22] M. Dinu, D. C. Kilper, H. R. Stuart: Optical performance monitoring using datastream intensity autocorrelation, J. Lightwave Technol. 24 (3), pp. 1194-1202 (2006).
- [23] R. Adams, M. Rochette, T. T. Ng, B. J. Eggleton: All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror. IEEE Photon. Technol. Lett. 18 (3), pp. 469-471 (2006).
- [24] W. Shieh, R. S. Tucker, W. Chen, X. Li, G. Pendock: Optical performance monitoring in coherent optical OFDM systems, Opt. Express 15, pp. 350-356 (2007).
- [25] Pan Z., C. Yu, A. E. Willner: Optical performance monitoring for the next generation optical communicaton networks. Opt. Fiber. Technology 16 (1), pp. 20-45 (2010).
- [26] Vo T. D., M. D. Pelusi, J. Schroder, F. Luan, S. J. Madden, D.-Y. Choi, D. A.Bulla, B. Luther-Davies, B. J. Eggleton: Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer. Optics Express 18 (4), 2010, pp. 3938-3945.
- [27] Blumenthal D. J., B. E. Olsson, G. Rossi, T. E. Dimmick, L. Rau, M. Masnovic, O. Lavrova, R. Doshi, O. Jerphagnon, J. E. Bowers, V. Kaman, L. A. Coldren, J. Barton: All-optical label swapping networks and technologies. J. Lightwave Technol., 18, 2000, pp. 2058-2075.
- [28] El-Bawab T. S., J-D Shin: Optical packet switching in core networks: Between vision and reality. IEEE Communication Magazine 40, 2002, pp. 61-65.
- [29] Yu J., G-K. Chang, Q. Yang: Optical label swapping in a packet-switched optical network using optical carrier suppression, separation, and wavelength conversion. IEEE Photon. Technol. Lett. 16, 2004, pp. 2156-2158.
- [30] Chen H., M. Chen, Y. Dai, S. Xie, B. Zhou: All optical labelling with vestigial sideband payload. Optics Letters 13 (7), 2005, pp. 2282-2288.
- [31] Djordjevic B., B. Vasic: Orthogonal frequency division multiplexing for high-speed optical transmission. Optics Express 14 (9), 2006, pp. 3767-3775.
- [32] Lowery A. J., L. B. Du, J. Armstrong: Performance of optical OFDM in ultralong-haul WDM lightwave systems. J. Lightwave Technol. 25 (1), 2007, pp.131-138.
- [33] Yang D., S. Kumar: Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT. Optics Express 17 (20), 2009, pp. 17214-17226.
- [34] Yang Q., Y. Ma, W. Shieh: Real-time reception of multi-gigabit coherent optical OFDM signals. Optics Express 17 (10), 2009, pp. 7985-7992.
- [34] McDonough J.: Moving standards to 100GbE and beyond. IEEE Applications and Practice, 6-9, 2007.
- [35] Lee K., Ch. T. Thai, J-K. K. Rhee: All optical discrete Fourier transform processor for 100-Gbps OFDM transmission. Optics Express 16 (6), 2008, pp. 4023-4028.
- [36] Du L. B., A. J. Lowery: Fiber nonlinearity precompensation for long-haul links using direct-detection optical OFDM. Optics Express 16 (9), 2008, pp. 6209-6215.
- [37] Wei J. L., X. L. Yang, R. P. Giddings, J. M. Tang: Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators. Optics Express 17 (11), 2009 pp. 9012-9027.
- [38] Lowery A. J.: Ampfified-spontaneous noise limit of optical OFDM lightwave systems. Optics Express 16 (2), 2008, pp. 860-865.
- [39] Chow C-W., C-H. Yeh, C-H Wang, F-H. Shih, C-L. Pan: WDM extended reach passive optical networks using OFDM-QAM. Optics Express 16 (16), 2008, pp. 12096-12101.
- [40] Sotobayashi H., W. Chujo, T. Ozeki: Ultrafast hierarchical OTDM/WDM network. Systemics, Cybernetics and Informatics 1 (6), 2003, pp. 101-104.
- [41] Olsson B-E., L. Rau, D. J. Blumenthal: WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter. IEEE Photonics Technology Letters 13 (9), 2001, pp. 1005-1007.
- [42] European Future Internet Portal [http://www.future-internet.eu]
- [43] Internet Society www.isoc.org.pl
- [44] Ethernet Alliance www.ethernetalliance.org (IEEE 802.3 Standard).
- [45] Inżynieria Internetu Przyszłości [http://www.iip.net.pl]
- [46] Polski Komitet Optoelektroniki SEP [http://pkopto.ise.pw.edu.pl]
- [47] Body Area Network http://en.wikipedia.org/wiki/Body_Area_Network
- [48] Redtacton http://www.redtacton.com
- [49] Polish Internet Exchange www.plix.pl
- [50] German Internet Exchange www.de-cix.net
- [51] London Internet Exchange www.linx.ne
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0045-0028