Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 14, No. 3 | 225-232
Tytuł artykułu

Towards focusing using photonic crystal flat lens

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report on the numerical simulation and fabrication of a two-dimensional flat lens based on negative refraction in photonic crystals. The slab acting as a lens is made of an hole array (operating at the wavelength of 1.5 µm) etched in a InP/InGaAsP/InP semiconductor layer. We first study the key issues for the achievement of a negative refractive index taking advantage of folding of dispersion branches with main emphasis in dispersion properties rather than the opening of forbidden gaps. The diffraction and refraction regimes are analysed according to the comparison of the wave-vector with respect to the relevant dimensions of the hole array. In the second stage, we illustrate technological challenges in terms of e-beam lithography on a sub-micron scale and deep reactive ion etching for an indium phosphide based technology.
Wydawca

Rocznik
Strony
225-232
Opis fizyczny
Bibliogr. 21 poz., il.
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • Institut d'Electronique de Microélectronique et de nanotechnologie, UMR CVRS 8520 Université de Lille 1, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq Cedex, France, Nathalie.Fabre@iem.univ-lille1.fr
Bibliografia
  • 1. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, 1995.
  • 2. S. Fasquel, "Propriétés optiques de structures guidantes en cristal photonique", These Doctorat d'Electronique, Université des Sciences et Technologies de Lille, 2005. (in French)
  • 3. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behaviour in the vicinity of the photonic band gap", Phys. Rev. Lett. B62, 10696-10705 (2000).
  • 4. C. Luo, S.G. Jonhson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction without negative index", Phys. Rev. Lett. B62, 201104 (2002).
  • 5. X. Hu and T. Chan, "Photonic crystals with silver nanowires as a near-infrared superlens", Appl. Phys. Lett. 85, 1520-1522 (2004).
  • 6. V.G. Veselago, "Some remarks regarding electrodynamics of materials with negative refraction", Appl. Phys. B81, 403-407 (2005).
  • 7. J.B. Pendry, "Negative refraction makes a perfect lens", Phys. Rev. Lett. 85, 3966-3969 (2000).
  • 8. C. Luo, S.G. Jonhson, J.D. Joannopoulos, and J.B. Pendry, "Subwavelength imaging in photonic crystals", Phys. Rev. Lett. B68, 045115 (2003).
  • 9. M. Perrin, S. Fasquel, T. Decoopman, X. Mélique, O. Vanbésien, E. Lheurette, and D. Lippens, "Left-handed electromagnetism obtained via nanostructured metamaterials: comparison with that from microstructured photonic crystals", J. Opt. A: Pure Appl. Opt. 7, S3-11 (2005).
  • 10. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C.M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens", Phys. Rev. Lett. 91, 207401 (2003).
  • 11. P.V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar, "Negative refraction and left-handed electromagnetism in microwave photonic crystals", Phys. Rev. Lett. 92, 127401 (2004).
  • 12. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Annad, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal", Phys. Rev. Lett. 93, 073902 (2004).
  • 13. E. Schonbrun, T. Yamashita, W. Park, and C.J. Summers, "Negative-index imaging by an index-matched photonic crystal slab", Phys. Rev. B73, 195117 (2006).
  • 14. K. Guven, K. Aydin, K.B. Alici, C.M. Soukoulis, and E. Ozbay, "Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens", Phys. Rev. B70, 205125 (2004).
  • 15. S. Fasquel, X. Mélique, O. Vanbésien, and D. Lippens, "Three-dimensional calculation of propagation losses in photonic crystal waveguides", Optics Comm. 246, 91-6 (2005).
  • 16. D. Lauvernier, S. Garidel, C. Legrand, and J.P. Vilcot, "Realization of sub-micron patterns on GaAs using a HSQ etching mask", Microelectron. Eng. 77, 210-216 (2005).
  • 17. A. Jeyakumar, "Development of inorganic resists for electron beam litrography, novel materials, and simulations", Doctor of Philosophy Thesis, Georgia Institute of Technology, 2004.
  • 18. J.S. Yu and Y.T. Lee, "Parametric reactive ion etching of InP using Cl2 and CH4 gases: effects of H2 and Ar addition", Semicond. Sci. Technol. 17, 230-236 (2002).
  • 19. www.oichina.cn/product/oipt/papers/InPProduction.pdf
  • 20. L. Berguiga, "Etude et réalisation d'un microscope en champ proche sous asservissement de type shear-force. Application a l'étude en champ proche du vieillissement de fibres optiques", Thesis, Université de Bourgogne, 2001. (in French).
  • 21. B. Cluzel, D. Gérard, E. Picard, T. Charvolin, F. de Fornel, and E. Hadji, "Sub-wavelength imaging of field confinement in an integrated waveguide photonic crystal microcavity", J. Appl. Phys. 98, 86109-1-3 (2005).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0013-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.