Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 14, No. 3 | 193-199
Tytuł artykułu

Identifying magnetic response of split-ring resonators at microwave frequencies

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study we provide experimental methods to identify the magnetic resonance of split ring resonators (SRR) at the microwave frequency regime. Transmission measurements were performed on both single SRR unit cell and periodic arrays of SRRs. The magnetic response of the SRR structure was demonstrated by comparing the transmission spectra of SRRs with closed ring resonators (CRR). Effects of the changes in the effective dielectric constant of the SRR medium on the band-gaps of SRR are investigated experimentally. SRRs not only exhibit a magnetic resonance band gap but also a band gap due to the electric resonance. Finally, we present the effect of electric coupling to the magnetic resonance of bianisotropic SRRs by utilizing SRRs with different orientations, and incident electromagnetic wave polarizations.
Wydawca

Rocznik
Strony
193-199
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
autor
Bibliografia
  • 1. V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability", Sov. Phys. Usp. 10, 509-514 (1968).
  • 2. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity", Phys. Rev. Lett. 84, 4184-4187 (2000).
  • 3. R.A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction", Science 292, 77-79 (2001).
  • 4. J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures", Phys. Rev. Lett. 76, 4773-4776 (1996).
  • 5. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena", IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
  • 6. K. Aydin, K. Guven, C.M. Soukoulis, and E. Ozbay, "Observation of negative refraction and negative phase velocity in left-handed metamaterials, Appl. Phys. Lett. 86, 124102 (2005).
  • 7. K. Aydin and E. Ozbay, "Negative refraction through an impedance-matched left-handed metamaterial slab", J. Opt. Soc. Am. B23, 415-418 (2006).
  • 8. E. Ozbay, K. Aydin, E. Cubukcu, and M. Bayindir, "Transmission and reflection properties of composite double negative metamaterials in free space", IEEE Trans. Antennas Propag. 51, 2592-2595 (2003).
  • 9. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C.M. Soukoulis, and E. Ozbay, "Experimental observation of true left-handed transmission peak in metamaterials., Opt. Lett. 29, 2623-2625 (2004).
  • 10. N. Katsarakis, T. Koschny, M. Kafesaki, E.N. Economou, and C.M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators", Appl. Phys. Lett. 84, 2943-2945 (2004).
  • 11. Y. Qi, B. Hou, and W. Wen, "Band gaps from ring resonators and structural periodicity", J. Phys. D: Appl. Phys. 38, 590-595 (2005).
  • 12. K. Aydin, K. Guven, N. Katsarakis, C.M. Soukoulis, and E. Ozbay, "Effect of disorder on magnetic resonance band gap of split-ring resonator structures", Opt. Exp. 12, 5896-5901 (2004).
  • 13. P. Markos, and C.M. Soukoulis, "Numerical studies of left-handed materials and arrays of split ring resonators", Phys. Rev. E65, 036622 (2002).
  • 14. R.W. Ziolkowski, "Design, fabrication, and testing of double negative metamaterials", IEEE Trans. Antennas Propag. 51, 1516-1529 (2003).
  • 15. M. Kafesaki, Th. Koschny, R.S. Penciu, T.F. Gundogdu, E.N. Economou, and C.M. Soukoulis, "Left-handed metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure Appl. Opt. 7, S12-22 (2005).
  • 16. E.A. Semouchkina, G.B. Semouchkin, M. Lanagan, and C.A. Randall, "FDTD study of resonance processes in metamaterials", IEEE Trans. Microwave Theory Tech. 53, 1477-1487 (2005).
  • 17. T. Koschny, P. Markos, D.R. Smith, and C.M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials", Phys. Rev. E68, 065602(R) (2003).
  • 18. T. Koschny, M. Kafesaki, E.N. Economou, and C.M. Soukoulis, "Effective medium theory of left-handed materials", Phys. Rev. Lett. 93, 107402 (2004).
  • 19. P. Gay-Balmaz, and O.J.F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators", J. Appl. Phys. 92, 2929-2936 (2002).
  • 20. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C.M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and design", New J. Phys. 7, 168 (2005).
  • 21. J. García-García, F. Martín, J.D. Baena, R. Marques, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators", J. Appl. Phys. 98, 033103 (2005).
  • 22. R. Marques, F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design . theory and experiments", IEEE Trans. Antennas Propag. 51, 2572-2581 (2003).
  • 23. R. Marques, F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials", Phys. Rev. B65, 144440 (2002).
  • 24. B. Sauviac, C.R. Simovski, and S.A. Tretyakov, "Double split-ring resonators: Analytical modelling and numerical simulations", Electromagnetics 24, 317-338 (2004).
  • 25. M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, "Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring", J. Appl. Phys. 95, 3778-3784 (2004).
  • 26. J.D. Baena, J. Bonache, F. Martín, R.M. Sillero, F. Falcone, T. Lopetegi, M.A.G. Laso, J. García-García, I. Gil, M.F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines", IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).
  • 27. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials", Science 303, 1494-1496 (2004).
  • 28. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz", Science 306, 1351-1353 (2004).
  • 29. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R.S. Penciu, T.F. Gundogdu, M. Kafesaki, E.N. Economou, Th. Koschny, and C.M. Soukoulis, "Magnetic response of splitring resonators in the far-infrared frequency regime", Opt. Lett. 30, 1348-1350 (2005).
  • 30. J. Zhou, Th. Koschny, M. Kafesaki, E.N. Economou, J.B. Pendry, and C.M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies", Phys. Rev. Lett. 95, 223902 (2005).
  • 31. I. Bulu, H. Caglayan, and E. Ozbay, "Experimental demonstration of labyrinth-based left-handed metamaterials", Opt. Exp. 13, 10238-18247 (2005).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0013-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.