Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 14, No. 3 | 167-177
Tytuł artykułu

Metamaterial-based source and scattering enhancements: from microwave to optical frequencies

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A brief review of metamaterial applications to source and scattering problems in the microwave and optical frequency regimes is given. Issues associated with modelling these systems are discussed. Electrically small radiating and scattering systems are emphasized. Single negative, double negative, and zero-index versions of these metamaterial-based systems are introduced that provide a means to manipulate their efficiency, bandwidth, and directivity characteristics.
Wydawca

Rocznik
Strony
167-177
Opis fizyczny
Bibliogr. 54 poz., il., rys., wykr.
Twórcy
  • University of Arizona, Department of Electrical and Computer Engineering, 1230 E. Speedway Blvd. Tucson, Arizona, 85721-0104 USA, ziolkowski@ece.arizona.edu
Bibliografia
  • 1. N. Engheta and R.W. Ziolkowski, IEEE Transactions on Antennas and Propagation, Special Issue on Metamaterials 51, 2546-2750 (2003).
  • 2. N. Engheta and R.W. Ziolkowski, "A positive future for double-negative metamaterials", IEEE Trans. Microwave Theory Tech. 53, 1535-1556 (2005).
  • 3. N. Engheta and R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley-IEEE Press, Piscataway, NJ, 2006.
  • 4. G.V. Eleftheriades and K.G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications, Wiley-IEEE Press, Piscataway, NJ, 2005.
  • 5. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, Piscataway, NJ, 2005.
  • 6. R.W. Ziolkowski and A.D. Kipple, "Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells", Phys. Rev. E 72, 036602 (2005).
  • 7. R.W. Ziolkowski and A. Kipple, "Causality and double-negative metamaterials", Phys. Rev. E 68, 026615 (2003).
  • 8. R.W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability", Phys. Rev. E 64, 1-15 (2001).
  • 9. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, 1995.
  • 10. A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edition, Artech House, Norwood, MA, 2000.
  • 11. A. Taflove and S.C. Hagness, Eds., Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition, Artech House, Norwood, MA, 2005.
  • 12. K.S. Kunz and R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Boca Raton, FL, 1993.
  • 13. R.W. Ziolkowski, "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs", Opt. Exp. 11, 662-681 (2003).
  • 14. R.W. Ziolkowski, "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs: errata", Opt. Exp. 11, 1596-1597 (2003).
  • 15. R.W. Ziolkowski, "Antennas and propagation in the presence of metamaterials and other complex media: Computational electromagnetic advances and challenges", IEICE Trans. Electron. E88-B, 2230-2238 (2005).
  • 16. Information about REMCOM and the XFDTD tool can be obtained at: http://www.remcom.com/.
  • 17. Information about computer simulation technology and the microwave studio tool can be obtained at: http://www.cst.de/.
  • 18. T. Weiland, "A discretization method for the solution of Maxwell's equations for six-component fields", in Electronics and Communications (AEÜ), Vol. 31, pp. 116, 1977.
  • 19. M. Clemens and T. Weiland, "Discrete electromagnetism with the finite integration technique", Progress in Electromagnetic Research 32, 65-87 (2001).
  • 20. Information about ANSOFT's HFSS can be obtained at: http://www.ansoft.com/products/hf/hfss/.
  • 21. Information about COMSOL's Multiphysics can be obtained at: http://www.comsol.com/.
  • 22. R.W. Ziolkowski and A. Kipple, "Application of double negative metamaterials to increase the power radiated by electrically small antennas", IEEE Trans. Antennas Propagat. 51, 2626-2640 (2003).
  • 23. R.W. Ziolkowski and A. Erentok, "Metamaterial-based efficient electrically small antennas", IEEE Trans. Antennas Propagat. 54, 2113-2130 (2006).
  • 24. R.W. Ziolkowski and A. Erentok, "At and below the Chu limit: passive and active broad bandwidth metamaterial-based electrically small antennas", submitted to IEE Proceedings, December 2005.
  • 25. A. Erentok and R.W. Ziolkowski, "A hybrid optimization method to analyze metamaterial-based electrically small antennas", submitted to IEEE Trans. Antennas Propagat., March 2006.
  • 26. J.S. McLean, "A re-examination of the fundamental limits on the radiation Q of electrically small antennas", IEEE Trans. Antennas Propagat. AP44, 672-676 (1996).
  • 27. C.A. Balanis, Antenna Theory, John Wiley & Sons, New York, 637-641 (2005).
  • 28. D. Yaghjian and S.R. Best, "Impedance, bandwidth, and Q of antennas", IEEE Trans. Antennas Propagat. 53, 1298-1324 (2005).
  • 29. L. Landau, and E.M. Lifschitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford, UK, 1984.
  • 30. R. Loudon, "The propagation of electromagnetic energy through an absorbing medium", J. Phys. A: Gen. Phys. 3, 233-245 (1970).
  • 31. R. Ruppin, "Electromagnetic energy density in a dispersive and absorptive material", Physics Letters A 299, 309.312 (2002).
  • 32. P.W. Milonni, Fast Light, Slow Light and Left-Handed Light, Institute of Physics Publishing, Philadelphia, 2005.
  • 33. R.W. Ziolkowski and F. Auzanneau, "Passive artificial molecule realizations of dielectric materials", J. Appl. Phys. 82, 3195-3198 (1997).
  • 34. F. Auzanneau and R.W. Ziolkowski, "Microwave signal rectification using artificial composite materials composed of diode loaded, electrically small dipole antennas", IEEE Trans. Microwave Theory and Tech. 46, 1628-1637 (1998).
  • 35. D.C. Wittwer and R.W. Ziolkowski, "Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy media", IEEE Trans. Antennas and Propagat. 48, 192-199 (2000).
  • 36. D.C. Wittwer and R.W. Ziolkowski, "Maxwellian material based absorbing boundary conditions for lossy media in 3D", IEEE Trans. Antennas and Propagat. 48, 200-213 (2000).
  • 37. W. Rotman, "Plasma simulation by artificial dielectrics and parallel plate media", IRE Trans. Antennas Propag. 10, 82-95 (1962).
  • 38. J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic meso structures", Phys. Rev. Lett. 76, 4773-4776 (1996).
  • 39. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Low frequency plasmons in thin-wire structures", J. Phys. Condens. Matter. 10, 4785-4809 (1998).
  • 40. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer-Verlag, New York, 1995.
  • 41. A. Alu, and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings", Phys. Rev. E 72, 016623 (2005).
  • 42. J.B. Pendry, D. Schurig, and D.R. Smith, "Controlling electromagnetic fields", Science 312, 1780-1782 (2006).
  • 43. G.W. Milton and N.A.P. Nicorov, "On the cloaking effects associated with anomalous localized resonance", Proc. R. Soc. A462, 1364 (2006).
  • 44. U. Leonhardt, "Notes on conformal invisibility devices", New Journal of Physics 8, 118 (2006).
  • 45. N. Engheta, "An idea for thin, subwavelength cavity resonators using metamaterials with negative permittivity and permeability", IEEE Antennas Wireless Propag. Lett. 1, 10-13 (2002).
  • 46. R.W. Ziolkowski, "Ultra-thin metamaterial-based laser cavities", J. Opt. Soc. Am. B23, 451-460 (2006).
  • 47. R.W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction" Phys. Rev. E 70, 046608 (2004).
  • 48. M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, "Directive photonic-bandgap antennas", IEEE Trans. Microwave Theory Tech. 47, 2115-2122 (1999).
  • 49. R. Biswas, E. Ozbay, B. Temelkuran, M. Bayindir, M.M. Sigalas, and K.M. Ho, "Exceptionally directional sources with photonic-bandgap crystals", J. Opt. Soc. Am. B18, 1684-1689 (2001).
  • 50. B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals", J. Opt. Soc. Am. A17, 1012-1020 (2000).
  • 51. S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals", Appl. Phys. Lett. 81, 1588-1590 (2002).
  • 52. S. Enoch, G. Tayeb, P. Sabouroux, N. Gu'erin, and P. Vincent, "A metamaterial for directive emission", Phys. Rev. Lett. 89, 213902 (2002).
  • 53. A. Lai, T. Itoh, and C. Caloz, "Composite right/left-handed transmission line metamaterials", IEEE Microwave Magazine 5, 34-50 (2004).
  • 54. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, IEEE Press and Wiley, New York, 2005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0013-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.