Czasopismo
2006
|
Vol. 14, No. 1
|
61-70
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Infrared Photodetectors (IPH) ; (30-31.08.2005, Warsaw, Poland)
Języki publikacji
Abstrakty
For over 27 years, SCD has been manufacturing and developing a wide range of high performance infrared detectors, designed to operate in either the mid-wave (MWIR) or the long-wave (LWIR) atmospheric windows. These detectors have been integrated successfully into many different types of system including missile seekers, time delay integration scanning systems, hand-held cameras, missile warning systems and many others. SCD's technology for the MWIR wavelength range is based on its well established 2D arrays of InSb photodiodes. The arrays are flip-chip bonded to SCD's analogue or digital signal processors, all of which have been designed in-house. The 2D focal plane array (FPA) detectors have a format of 320×256 elements for a 30-µm pitch and 480×384 or 640×512 elements for a 20-µm pitch. Typical operating temperatures are around 77–85 K. Five years ago SCD began to develop a new generation of MWIR detectors based on the epitaxial growth of antimonide based compound semiconductors (ABCS). This ABCS technology allows band-gap engineering of the detection material which enables higher operating temperatures and multi-spectral detection. This year SCD presented its first prototype FPA from this program, an InAlSb based detector operating at a temperature of 100 K. By the end of this year SCD will introduce the first prototype MWIR detector with a 640×512 element format and a pitch of 15 µm. For the LWIR wavelength range SCD manufactures both linear Hg1–xCdxTe (MCT) detectors with a line of 250 elements and time delay and integration (TDI) detectors with formats of 288×4 and 480×6. Recently, SCD has demonstrated its first prototype uncooled detector which is based on VOx technology and which has a format of 384×288 elements, a pitch of 25 µm, and a typical NETD of 50 mK at F/1. In this paper, we describe the present technologies and products of SCD and the future evolution of our detectors for the MWIR and LWIR detection.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
61-70
Opis fizyczny
Bibliogr. 15 poz., il., wykr.
Twórcy
Bibliografia
- 1. O. Nesher, P.C. Klipstein, and E. Weiss, "Advanced IR detector design at SCD: from D3CTM to ABCS", Proc. SPIE 5359, 101-110 (2004).
- 2. T. Markovitz, F. Schapiro, D. Alfiya, S. Hasson, A. Magner and O. Nesher, "Piccolo - a high performance IR detector optimized for handheld applications", Proc. SPIE 5406, 239-248 (2004).
- 3. M. Zucker, I. Pivnik, E. Malkinson, J. Haski, T. Reiner, D. Admon, M. Keinan, M. Yassen, I. Sapiro, L. Bykov, N. Sapir, and A. Fraenkel, "Long, mid-wave infrared detector with time delayed integration", Proc. SPIE 4820, 580-592 (2002).
- 4. S. Elkind, A. Adin, I. Nevo, and A.B. Marhasev, "Focal plane processor with a digital video output for InSb detectors", Proc. SPIE 4820, 751-757 (2002).
- 5. O. Nesher, S. Elkind, A. Adin, I. Nevo, A.B. Yaakov, S. Raichshtain, A.B. Marhasev, A. Magner, M. Katz, T. Markovitz, D. Chen, M. Kenan A. Ganany, J.O. Schlesinger, and Z. Calahorra, "A digital cooled InSb detector for IR detection", Proc. SPIE 5074, 120-129 (2003).
- 6. O. Nesher, S. Elkind, I. Nevo, T. Markovitz, A. Ganany, A.B. Marhashev, and M. Ben-Ezra, "480x384 element InSb detector with digital processor", Proc. SPIE 5406, 214-221 (2004).
- 7. P. Klipstein, E. Jacobson, O. Klin, M. Yassen, Z. Calahora, E. Weiss, S. Risemberg, and D. Rosenfeld, "Antimonide based materials for infrared detection" Proc. SPIE 4820, 653-662 (2002).
- 8. P. Klipstien, Z. Calahora, A. Zemel, R. Gat, E. Harush, E. Jacobson, O. Klin, M. Yassen, J. Oiknine-Schlesinger, E. Weiss, and S. Risemberg, "Third-generation infrared detector program at SCD", Proc. SPIE 5406, 222-229 (2004).
- 9. P. Klipstien, Z. Calahora, A. Zemel, R. Gat, E. Harush, E. Jacobson, O. Klin, M. Yassen, J. Oiknine-Schlesinger, E. Weiss, and S. Risemberg, "3rd generation infrared detectors at SCD: InAlSb focal plane arrays", Proc. SPIE 5406, 222-229 (2004).
- 10. O. Nesher, S. Elkind, A. Adin, U. Palty, O. Pelleg, E. Jacobsohn, T. Markovitz, I. Szafranek, Z. Calahorra, and J. Oiknine-Schlesinger, "Performance of BF focal plane array 320x256 InSb detectors", Proc. SPIE 4820, 699-707 (2002).
- 11. U. Mizrahi, A. Fraenkel, L. Bykov, A. Giladi, A. Adin, E. Ilan, N. Shiloah, E. Malkinson, Y. Zabar, D. Seter, R. Nakash, and Z. Kopolovich, "Uncooled detector development program at SCD", Proc. SPIE 5783, 551-558 (2005).
- 12. O. Nesher, S. Elkind, and T. Markovitz, "Advantages of SCD detectors for missile warning system", Proc. SPIE 5612, 32-41 (2004).
- 13. A. Fuchs, L. Bürkle, R. Hamid, N. Herres, W. Pletschen, R.E. Sah, R. Kiefer, and J. Schmitz, "Optoelectronic properties of photodiodes for the mid- and far-infrared based on the InAs/GaSb/AlSb materials family", Proc. SPIE 4288, 171-182 (2001).
- 14. P. Klipstien, Z. Calahora, A. Zemel, R. Gat, E. Harush, E. Jacobson, O. Klin, M. Yassen, J. Oiknine-Schlesinger, and E. Weiss, "Third-generation infrared detector program at SCD: InAlSb focal plane arrays", Proc. SPIE 5612, 42-50 (2004).
- 15. L. Shkedy, O. Amir, Z. Calahorra, J. Oiknine-Schlesinger, and I. Szafranek, "Temperature dependence of spatial noise in InSb focal plane arrays", Proc. SPIE 4028, 481-488 (2000).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0012-0019