Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2005 | Vol. 35, nr 2 | 283-294
Tytuł artykułu

X-ray carpal-bone image boundary feature analysis using region statistical feature based level set method for skeletal age assessment application

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Skeletal age assessment is one of the important applications of hand radiography in the area of pediatric radiology. Feature analysis of the carpal-bones can reveal the important information for skeletal age assessment. The present work in this paper faces the problem of the detection of carpal-bone features from X-ray image. A novel and effective segmentation technique is presented in this work with carpal-bone image for skeletal age estimation. Carpal-bone segmentation is a critical operation of the automatic skeletal age assessment system. This method consists of two procedures. First, the original carpal-bone image is preprocessed via anisotropic diffusion filter. Then, the carpal-bone image is segmented by region based level set method. The basic idea of the region based level set method is to add a force that takes into account the information within the regions in order to add robustness and more efficiently separate homogeneous regions. Experiments are carried out on X-ray images of carpal-bone. The experimental results show that incorporating region statistical information into the level set method, an accurate and robust segmentation can be achieved.
Wydawca

Czasopismo
Rocznik
Strony
283-294
Opis fizyczny
Bibliogr. 16 poz., il.
Twórcy
autor
autor
  • Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
autor
  • Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
autor
  • Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
Bibliografia
  • [1] Greulich W.W., Pyle S.I., Radiographic Atlas of Skeletal Development of the Hand and Wrist, 2nd Ed., Stanford University Press, Palo Alto, CA 1959.
  • [2] Tanner J.M., Whitehouse R.H., Marshall W.A., Healy M.J.R., Assessment of Skeletal Maturity and Prediction of Adult Height (TW2 Method), 2nd Ed., Academic Press, London 1983
  • [3] PiETKA E., Kaabi L., Kuo M.L., Huang H.K., Feature extraction in carpal-bone analysis, IEEE Transactions on Medical Imaging. 12(1), 1993, pp. 44-9.
  • [4] Ko C.C., Mao C.W., Lin C.J., Sun Y.N., Image analysis for skeletal evaluation of carpal bones, Proceedings of the SPIE 2501, pt. 2, 1995, pp. 951-61.
  • [5] Michael D.J., Nelson A.C., HANDX: A model-based system for automatic segmentation of bones from digital hand radiographs, IEEE Transactions on Medical Imaging 8(1), 1989, pp. 64-9.
  • [6] Efford N.D., Knowledge-based segmentation and feature analysis of hand wrist radiographs, [In] School of Computer Studies, Research Report Series, University of Leeds, Report 94.31, 1994.
  • [7] Osher S.J., Sethian J.A., Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics 79(1), 1988, pp. 12-49.
  • [8] Chakraborty a., Staib L., Duncan J., Deformable boundary finding in medical images by integrating gradient and region information, IEEE Transactions on Medical Imaging 15(6), 1996, pp. 859-70.
  • [9] Chan T.F., Vese L.A., Active contours without edges, IEEE Transactions on Image Processing 10(2), 2001, pp. 266-77.
  • [10] Paragios N., Deriche R., Geodesic active regions for supervised texture segmentation, Proceedings of ICCV, Sept. 1999, Corfu, Greece.
  • [11] Chan t., Vese L., An active contour model without edges, [In] Lecture Notes in Computer Science, Proceedings of the Second International Conference on Scale-Space Theories in Computer Vision, [Eds.] M. Nielsen, P. Johansen, O.F. Olsen, J. Weickert, Vol. 1682, 1999, pp. 141-51.
  • [12] Zhu S.-C., Yuille a., Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence 18(9), 1996, pp. 884-900.
  • [13] Perona p., Malik J., Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 1990, pp. 629-39.
  • [14] Germain O., Refregier P., Optimal snake-based segmentation of a random luminance target on a spatially disjoint background, Optical Letters 21(22), 1996, pp. 1845-7.
  • [15] Dempster A.P., Laird N.M., Rubin D.B., Maximum-likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 39, 1977, pp.1-38.
  • [16] Guillermo Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0012-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.