Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 13, No. 1/2 | 79-98
Tytuł artykułu

The Haar-wavelet transform in digital image processing: its status and achievements

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Image processing and analysis based on continuous or discrete image transforms are classic techniques. The image transforms are widely used in image filtering, data description, etc. Nowadays, wavelet theorems make up very popular methods of image processing, denoising and compression. Considering that Haar functions are the simplest wavelets, these forms are used in many methods of discrete image transforms and processing. The image transform theory is a well known area characterized by a precise mathematical background, but in many cases some transforms have particular properties which have not been investigated yet. This paper presents graphic dependences between parts of Haar and wavelets spectra for the first time. It also presents a method of image analysis by means of the wavelet-Haar spectrum. Some properties of the Haar and wavelet spectrum are investigated. Extraction of image features directly from spectral coefficients distribution is presented. The paper shows that two-dimensional products of both Haar and wavelet functions can be treated as exstractors of particular image features. Furthermore, it is also shown that some coefficients from both the spectra are proportional, which simplifies computations and analyses to some degree.
Słowa kluczowe
Wydawca

Rocznik
Strony
79-98
Opis fizyczny
Bibliogr. 50 poz., il., wykr.
Twórcy
autor
  • Institute of Informatics, University of Silesia, ul. Będzińska 39, 41-200 Sosnowiec, Poland, porwik@us.edu.pl
autor
Bibliografia
  • [1] Haar A.: Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, 69, 331-371, 1910.
  • [2] Rudin W.: Functional Analysis. McGraw-Hill, NY, 1973.
  • [3] Ahmed N., Rao K.R.: Orthogonal Transforms for Digital Signal Processing. S-V, Berlin, 1975.
  • [4] Harmuth H.F.: Sequency Theory. Foundations and applications. AP, NY, 1977.
  • [5] Pratt W. K.: Digital Image Processing. John Wiley and Sons, NY, 1978.
  • [6] Besslich P. W., Trachtenberg L. A.: The sign transform an invertible non-linear transform with quantized coefficients. In: Moraga C., (Ed.): Theory and Application of Spectral Techniques, University Dortmund Press, 1988.
  • [7] Jain A.K.: Fundamentals of Digital Image Processing. Prentice Hall, 1988.
  • [8] Mallat S.: Multifrequency channel decompositions of images and wavelet models. IEEE Trans. ASSP, 37, 2091-2110, 1989.
  • [9] Mallat S. A.: Theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. PAMI, 11(7), 674-693, 1989.
  • [10] Yankowitz D., Bruckstein A.M.: A new method for image segmentation. CVGIP, 46/1, 82-95, 1989.
  • [11] Daubechies I.: Ten lectures on wavelets. Philadelphia PA, SIAM, 1992.
  • [12] Gröchenig K., Madych W. R.: Multiresolution analysis, Haar bases and self-similar tilings of Rn IEEE Trans. on IT, 38(2), 556-568, 1992.
  • [13] Odegard J.: Image Enhancement by Nonlinear Wavelet Processing. Rice University CML Technical Report, 1994.
  • [14] Bhaskaran V., Konstantinides K.: Image and Video Compression Standards: Algorithms and Architectures. Kluwer, Boston, 1995.
  • [15] Stollniz E. J., DeRose T. D., Salesin D. H.: Wavelets for computer graphics: a primer, Part 1. IEEE CG&A, 76-84, 1995.
  • [16] Fournier A.: Wavelets and their Applications in Computer Graphics. SIGGRAPH 95, University of British Columbia, 1995.
  • [17] Castleman K. R.: Digital Image Processing. Prentice-Hall, New Jersey, 1996.
  • [18] Calderbank A. R., Daubechies I., Sweldens W., Yeo B. L.: Lossless image compression using integer to integer wavelet transforms. Proc. Int. Conf. on Image Processing, 1, 596-599, 1997.
  • [19] Claypoole R., Davis G., Sweldens W., Baraniuk R.: Adaptive wavelet transforms for image coding. Asilomar Conf. on Signals, Systems and Computers, 1997.
  • [20] Creusere C. D.: A new method of robust image compression based on the embedded zerotree wavelet algorithm. IEEE Trans. on Image Processing, 6, 1436-1442, 1997.
  • [21] Przelaskowski A., Kazubek M., Jamrógiewicz T.: Optimalization of the wavelet-based algorithm for increasing the medical image compression efficiency. Proc. of the TFTS'97 - 2nd IEEE UK Symp. on Applications of Time-Frequency and Time Scale Methods, 177-180, 1997.
  • [22] Walker J. S.: Fourier analysis and wavelet analysis. Notices of the American Mathematical Society, 44(6), 658-670, 1997.
  • [23] Wojtaszczyk P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge, 1997.
  • [24] Calderbank A. R., Daubechies I., Sweldens W., Yeo B. L.: Wavelet transforms that map integers to integers. Applied and Computational Harmonics Analysis, 5(3), 332-369, 1998.
  • [25] Daubechies I.: Recent results in wavelet applications. J. of Electronic Imaging, 7(4), 719-724, 1998.
  • [26] Daubechies L., Sweldens W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl., 4(3), 247-269, 1998.
  • [27] Davis G., Nosratinia A.: Wavelet-based image coding: an overview. Applied and Computational Control, Signals, and Circuits, 1(1), 1998.
  • [28] Sonka M., Hlavac V., Boyle R.: Image processing, Analysis and Machine Vision. Brooks/Cole Publishing Comp, 1998.
  • [29] Davis G., Strela V., Turcajova R.; Multivwavelet Construction via the Lifting Scheme. Wavelet Analysis and Multiresolution Methods, T. X. He (Ed.): Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, 1999.
  • [30] Smith S. W.: The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing, San Diego, 1999.
  • [31] Christopoulos C., Skodras A., Ebrahimi T.: The JPEG2000 still image coding system: an overview. IEEE Trans. on Consumer Electronics, 46(4), 1103-1127, 2000.
  • [32] Fernandes F., van Spaendonck R., Burrus C.: Directional complex-wavelet processing. Wavelet Applications in Signal and Image Processing, 2000.
  • [33] Jahromi O. S., Francis B. A., Kwong R. H.: Algebraic theory of optimal filterbanks. Proc. of IEEE Int. Conf. on ASSP, 1, 113-116, 2000.
  • [34] Romberg J., Choi H., Baraniuk R., Kingsbury N.: Multiscale classification using complex wavelets. IEEE Int. Conf. on Image Processing, Vancouver, Canada, 2000.
  • [35] Addison P. S., Watson J. N., Feng T.: Low-oscillation complex wavelets. J. of Sound and Vibration, 254(4), 733-762, 2002.
  • [36] Blu T., Unser M.: Wavelets, fractals and radial basis functions. IEEE Trans. on Signal Processing, 50(3), 543-553, 2002.
  • [37] Munoz A., Ertle R., Unser M.: Continuous wavelet transform with arbitrary scales and O(N) complexity. Signal Processing, 82, 749-757, 2002.
  • [38] Resnikoff H., Wells R. O. Jr.: Wavelet Analysis. S-V, NY, 2002.
  • [39] Zeng L., Jansen C. P., Marsch S., Unser M., Hunziker R.: Four-dimensional wavelet compression of arbitrarily sized echocardiographic data. IEEE Trans. on Medical Imaging, 21(9), 1179-1188, 2002.
  • [40] Drori I., Lischinski D.: Fast multiresolution image operations in the wavelet domain. IEEE Trans. on Visualization and Computer Graphics, 9(3), 395-411, 2003.
  • [41] Fernandes F., Selesnick I., van Spaendonck R., Burrus C.: Complex wavelet transforms with allpass filters. Signal Processing, 83(8), 1689-1706, 2003.
  • [42] Jorgensen P.: Matrix factorizations, algorithms, wavelets. Notices of the American Mathematical Society, 50(8), 880-894, 2003.
  • [43] Jahromi O. S., Francis B. A., Kwong R. H.: Algebraic theory of optimal filterbanks. IEEE Trans. on Signal Processing, 51, 442-457, 2003.
  • [44] Lisowska A.: Nonlinear weighted median filters in dyadic decomposition of images. Annales UMCS Informatica AI, 1, 157-164, 2003.
  • [45] Prieto M. S., Allen A. R.: A similarity metric for edge images. IEEE Trans. on PAMI, 25(10), 1265-1273, 2003.
  • [46] Romberg J., Wakin M., Baraniuk R.: Multiscale geometric image processing. SPIE Visual Communications and Image Processing, Lugano, Switzerland, 2003.
  • [47] Yitzhaky Y., Peli E.: A method for objective edge detection evaluation and detector parameter selection. IEEE Trans. on PAMI, 25(8), 1027-1033, 2003.
  • [48] Zhang J. K., Davidson T. N., Wong K. M.: Efficient design of orthonormal wavelet bases for signal representation. IEEE Trans. on Signal Processing, 2003.
  • [49] Lisowska A., Porwik P.: New extended wavelet method of 2d signal decomposition based on Haar transform. Mathematics and Computers in Simulation, Elsevier Journal, (to appear), 2004.
  • [50] Porwik P., Lisowska A.: The new graphic description of the haar wavelet transform. LNCS, 3039, S-V, Berlin, Heidelberg, NY, 1-8, 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0006-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.