Czasopismo
2004
|
Vol. 50, z. 3
|
365-377
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Electrothermal macromodel of the controller of ZVS resonant converter for spice
Języki publikacji
Abstrakty
Praca dotyczy problematyki modelowania układów sterujących przetwornic rezonansowych ZVS na przykładzie monolitycznego układu scalonego MC34067. W pracy sformułowano elektrotermiczny makromodel rozważanego sterownika dla programu SPICE. Poprawność opracowanego makromodelu zweryfikowano eksperymentalnie w opracowanym przez autorów układzie testowym.
For a long time, the swithing-mode dc-dc converters are a very important cass of power electronic circuits. Among these circuits, the resonant converters switching at zero voltage (ZVS) are particularly interesting. In the process of designing of such a class of converters, full credible models describing the converter components, or describing a whole circuit, play the fundamental role and the proper computer tools are necessary as well. Today, SPICE along with tyhe built-in models and macromodels worked out by a producer of some devices, such as: diodes, transistors, inductors, transformers etc. is a confortable tool. Unfortunately, there are no models or macromodels, of resonant converter controllers available for the users of SPICE. The aim of this paper is to propose a new form of MC34067 resonant converter controller macromodel for SPICE including phenomena of selfheating. The macromodel structure results both from the controller block diagram presented in catalogue data and the principle of operation of the controller of the resonant converters. The formulated electrothermal macromodel is dedicated to describe the fundamental physical phenomena existing in the considered IC, indispensable in its steady-state analysis. This macromodel, formed as an electrical network, describes the fundamental and most important features of the considered IC, as the influence of the ambient temperature, supply voltage and selfheating (resulting from changing the electrical energy dissipated in ICs to heat at non-ideal cooling conditions) on the terminal charteristics and its working parameters. Because the presented macromodel is designed for the analysis of the resonant converters in the steady-state, such phenomena, as the soft-start, the overcurrent and undervoltage protection have been omitted in the macromodel construction. In the macromodel, two signals - the reference voltage and the error voltage arises from the output of the converter, excite the inputs of the error amplifier (WB). The oscillator is composed of the reference voltage source (UREF), the comparator with the histeresis (CH1) and the controlled switch (S1). To generate the sawtooth pulses of the time duration depending on the value of the error amplifier output voltage, three external elements ROSC, COSC and RCFO are needed. The swith S2 is controlled by the use of the identical signal as the swith S1, whereas the external elements CT and RT determine the off-time. Comparator generates the pulse train of the time, being the difference of the period of the switch controlling signal and the off-time. The pulse train of the required of the frequency (after passing through the flip-flop circuit) controls two Totem-Pole output circuit. The lumped thermal model of the considered IC in the form of Foster network is used. The proposed macromodel was verified experimentally in the test circuit (TC) designed by authors. Some nonisothermal (d.c. measurements at the thermal steady-state) measurements for the various values of supply voltage, the load resistance as well as for some values of RC elements connected to the oscillator terminals and determining the period and the pulse duration time of output signals, have been performed in TC. The supply current and the inner temperature of controller are calculated as well. A satisfactory agreement between the calculations and measurements of the dependencies of the pulse duration time and the period of the output signal on the controlling voltage have been achieved.
Czasopismo
Rocznik
Tom
Strony
365-377
Opis fizyczny
Bibliogr. 11 poz., rys., wykr.
Twórcy
autor
- Katedra Radioelektroniki Morskiej, Akademia Morska w Gdyni, ul. Morska 83, 81-225 Gdynia, gorecki@am.gdynia.pl
autor
- Katedra Radioelektroniki Morskiej, Akademia Morska w Gdyni, ul. Morska 83, 81-225 Gdynia, zarebski@am.gdynia.pl
Bibliografia
- 1. N. Mohan, T. M. Undeland, W. P. Robbins: Power Electronics: Converters, Applications, and Design. New York, John Wiley&Sons, 1995.
- 2. M. Kazimierczuk, D. Czarkowski: Resonant Power Converters, New York, Wiley&Sons, 1995.
- 3. R. W. Ericson, D. Maksimovic: Fundamentals of Power Electronics. Kluwer Academic Publisher, 2001.
- 4. Switch-reg.lib, biblioteka programu SPICE, 1998.
- 5. Ch. P. Basso: Switch-Mode Power Supply SPICE Cookbook. McGraw-Hill, 2001.
- 6. J. Zarębski, K. Górecki: SPICE Modelling of PWM Controllers. IEEE International Power Electronics Congress CIEP'2002, Guadalajara, 2002, p. 61.
- 7. J. Zarębski, K. Górecki: Temperature Affects the UC3842 Current Mode PWM Controller. 9th International Workshop on Thermal lnvestigations of ICs and Systems THERMINIC, Aix-en-Provence, 2003, p. 117.
- 8. K. Górecki, J. Zarębski: A new SPICE macromodel of ZVS resonant conventer controller. 6th International Seminar on Power Semiconductors ISPS'2002. Praga 2002, p. 195.
- 9. MC34067, MC33067 High Performance Resonant Mode Controllers. Catalogue data. ON Semiconductor, 2000.
- 10. J. Zarębski: Modelowanie, symulacja i pomiary przebiegów elektrotermicznych w elementach półprzewodnikowych i układach elektronicznych. Prace Naukowe WSM w Gdyni, Gdynia, 1996.
- 11. W. J. Stepowicz: Elementy półprzewodnikowe. Wydawnictwo Akademii Morskiej, Gdynia, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0005-0150