Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 12, No. 1 | 21--32
Tytuł artykułu

Staebler-Wronski effect in amorphous silicon and its alloys

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
XVII School of Optoelectronics : Photovoltaics-Solar Cells and Detector ; (17. ; 13-17.10.2003 , Kazimierz Dolny, Poland)
Języki publikacji
EN
Abstrakty
EN
The review gives the introductory information on metastable light-induced degradation of amorphous silicon called the Staebler-Wronski effect (SWE). The paper highlights some recent developments in our understanding of the effect as well as some successes in reducing the SWE. The latest results of the author’s experiments on the metastable effects and the degradation in thin film transistors and solar cells are also presented.
Wydawca

Rocznik
Strony
21--32
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Institute of Electronics, AGH-University of Science and Technology, 30 Mickiewicza Ave., 30-059 Cracow, Poland, kolodzie@agh.edu.pl
Bibliografia
  • 1. D.L. Staebler and C.R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phys. Lett. 31, 292–294 (1977).
  • 2. K. Winer, “Defect formation in a-Si:H”, Phys. Rev. B41, 12150–12161 (1990).
  • 3. M. Stutzmann, “Metastability in amorphous and microcrystalline semiconductors”, in Amorphous and Microcrystalline Semiconductor Devices: Materials and Device Physics, edited by J. Kanicki, pp. 129–187, MA: Artech House, Norwood, 1992.
  • 4. R.A. Street, Hydrogenated Amorphous Silicon, Cambridge, UK: Cambridge Univ. Press, 1991.
  • 5. T. Kamei, N. Hata, A. Matsuda, T. Uchimya, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon”, Appl. Phys. Lett. 68, 2380–2382 (1996).
  • 6. H. Fritzsche, “Search for explaining the Staebler-Wronski effect”, Mat. Res. Soc. Symp. Proc. 467, 19–30 (1997).
  • 7. U. Schneider, B. Schröder, and F. Finger, “Saturation effect and annealing behaviour of metastable defects induced by keV-electron irradiation in intrinsic a-Si:H”, J. Non-Cryst. Solids 114, 633–635 (1989).
  • 8. J. Fan and J. Kakalios, “Light-induced changes of the non-Gaussian 1/f noise statistics in doped hydrogenated amorphous silicon”, Phil. Mag. B69, 595–608 (1994).
  • 9. A. Kołodziej, P. Krewniak, and S. Nowak, “Technology of the thin silicon solar cells”, Report for the State Committee for Scientific Research on realisation of the Goal Orientated Research, Project No. PBZ KBN 05/T11/98, AGH, Kraków, 2003.
  • 10. A. Kołodziej, P. Krewniak, and S. Nowak, “Improvements in silicon thin film solar cell efficiency”, Opto-Electron. Rev. 11, 71–79 (2003).
  • 11. A. Kołodziej and P. Krewniak, “Radiation damage of amorphous and microcrystalline silicon image sensor structure”, Mat. Res. Soc. Symp. Proc. 487, 381–387 (1998).
  • 12. A. Kołodziej, P. Krewniak, and S. Nowak, “Influence of ZnO/p+a-Si:H microcrystallisation and antireflection coatings on pin a-Si:H solar cells performance”, Mat. Res. Soc. Symp. Proc. 715, A6.7.1–A6.7.6 (2002).
  • 13. R.A. Street and M. Hack, “Saturation and recovery kinetics of current-induced defects in a-Si:H”, J. Non. Cryst. Solids 137, 26–266 (1991).
  • 14. A. Kołodziej, P. Krewniak, and R. Tadeusiewicz, “Wide bandgap >1.8 eV amorphous silicon for solar multijunction cell and image sensor applications”, Mat. Res. Soc. Symp. Proc. 609, A5.2.1–A.5.2.6 (2000).
  • 15. R. Wronski, J.M. Pearce, R.J. Koval, X. Niu, A.S. Ferlauto, J. Koh, and R.W. Collins, “Light induced defect creation kinetics in thin film protocrystalline silicon materials and their solar cells”, Mat. Res. Soc. Symp. Proc. 715, A.13.4.1–A.13.4.12 (2002).
  • 16. S. Nonomura, T. Gotoh, M. Nishio, T. Sakamoto, and M. Kondo, “Photoinduced expansion in hydrogenated amorphous silicon”, Mat. Res. Soc. Symp. Proc. 557, 337–345 (1999).
  • 17. G. Kong, “Light excited structural instability in a-Si:H”, Mat. Res. Soc. Symp. Proc. 507, 425–429 (1998).
  • 18. R.A. Street and S. Guha, Technology and Applications of Amorphous Silicon, 1–100 and 252–305, Springer, Berlin, 2000.
  • 19. R.W. Collins, A.S. Ferlauto, G.M. Ferreira, K. Joohyun, C. Chi, R.J. Koval, J.M. Pearce, C.R. Wronski, M.M. Al-Jassim, and K.M. Jones, “Application of deposition phase diagrams for the optimisation of a-Si:H-based materials and solar cells”, Mat. Res. Soc. Symp. Proc. 762, A10.1.1–A10.1.12 (2003).
  • 20. T. Su, P.C. Taylor, S. Chen, R.S. Crandall, and A.H. Mahan, “Molecular hydrogen in amorphous silicon revisited”, J. Non-Cryst. Solids 266–269, 195–200 (2000).
  • 21. H.M. Branz, “Hydrogen collision model: Quantitative description of metastability in amorphous silicon”, Phys. Rev. B59, 5498–5512 (1999).
  • 22. T. Su, R. Plachy, and P.C. Taylor, “H NMR evidence for a change in the local hydrogen environment of sites associated with the Staebler-Wronski effect in a-Si:H”, Mat. Res. Soc. Symp. Proc. 715, A11.2.1–A11.2.6 (2002).
  • 23. A. Godet, “Light-induced defect creation in a-Si:H: Metastable defects or metastable H atoms?”, J. Non-Cryst. Solids 227–230, 272–275 (1998).
  • 24. P. Stradins and H. Fritzsche, “Photoinduced creation of metastable defects in a-Si:H at low temperatures and their effect on the photoconductivity”, Philos. Mag. B69, 121–139 (1994).
  • 25. S. Yamasaki, T. Umeda, J. Isoya, J.H. Zhou, and K. Tanaka, “Microscopic nature of localised states in a-Si:H and their role in metastability”, J. Non-Cryst. Solids 227–230, 332–337 (1998).
  • 26. J. Daey, J. Ouwens, and R.E.I. Schropp, “Hydrogen microstructure in hydrogenated amorphous silicon”, Phys. Rev. B54, 17759–17762 (1996).
  • 27. S. Acco, D.L. Williamson, P.A. Stolk, F.W. Saris, M.J. van den Boogard, W.C. Sinke, W.F. van der Weg, and S. Roorda, “Hydrogen solubility and network stability in amorphous silicon”, Phys. Rev. B53, 4415–4427 (1996).
  • 28. P. Masson, A. Ouhlal, and A. Yelon, “Long-range structural relaxation in the Staebler-Wronski effect”, J. Non-Cryst. Solids 190, 151–156 (1995).
  • 29. T. Goto, S. Nonomura, M. Nishio, N. Masui, S. Nitta, M. Kondo, and A. Matsuda, “Detection of photoinduced structural change in a a-Si:H by bending effect”, J. Non-Cryst. Solids 227–230, 263–266 (1998).
  • 30. G. Yue, G. Kong, D. Zhang, Z. Ma, S. Sheng, and X. Liao, “Dielectric response and its light-induced change in undoped a-Si:H films below 13 MHz”, Phys. Rev. B57, 2387–2392 (1998).
  • 31. P. Roca and Cabarrocas, “Plasma deposition of silicon clusters: a means to produce medium range ordered silicon thin films”, Mat. Res. Soc. Symp. Proc. 507, 391–395 (1998).
  • 32. P.A. Fedders, “Energetics of interstitial hydrogen and hydrogen diffusion in realistic models of a-Si:H”, Mat. Res. Soc. Symp. Proc. 715, A.1.3.1–A.1.3.6 (2002).
  • 33. D.E. Carlson, L.F. Chen, G. Ganguly, G. Lin, A.R. Middya, R.S. Crandall, and R. Reedy, “A comparison of the degradation and annealing kinetics in amorphous silicon and amorphous silicon-germanium solar cells”, Mat. Res. Soc. Symp. Proc. 557, 395–400 (1999).
  • 34. R. Biswas and B.C. Pan, “Microscopic nature of StaeblerWronski defect formation in amorphous silicon”, Appl. Phys. Lett. 72, 371 (1998).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0005-0076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.