Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 20, No. 1 | 53-60
Tytuł artykułu

Cavity ring down spectroscopy : detection of trace amounts of substance

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We describe several applications of cavity ring-down spectroscopy (CRDS) for trace matter detection. NO₂ sensor was constructed in our team using this technique and blue-violet lasers (395–440 nm). Its sensitivity is better than single ppb. CRDS at 627 nm was used for detection of NO₃. Successful monitoring of N₂O in air requires high precision mid-infrared spectroscopy. These sensors might be used for atmospheric purity monitoring as well as for explosives detection. Here, the spectroscopy on sharp vibronic molecular resonances is performed. Therefore the single mode lasers which can be tuned to selected molecular lines are used. Similarly, the spectroscopy at 936 nm was used for sensitive water vapour detection. The opportunity of construction of H₂O sensor reaching the sensitivity about 10 ppb is also discussed.
Wydawca

Rocznik
Strony
53-60
Opis fizyczny
Bibliogr. 34 poz., wykr.
Twórcy
autor
autor
autor
  • Institute of Experimental Physics, University of Warsaw, 69 Hoża Str., 00-068 Warsaw, Poland, tadstac@fuw.edu.p
Bibliografia
  • 1. J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Uenten, D.S. Urevig, D.J. Spencer, and D.J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase−shift method”, Appl. Optics 19, 144–147 (1980).
  • 2. A. O’Keefe and D.A.G. Deacon, “Cavity ring−down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544–2551 (1988).
  • 3. K.W. Busch and M.A. Busch, Cavity−Ringdown Spectroscopy, an Ultratrace−Absorption Measurement Technique, ACS Symposium series, American Chemical Society, Washington DC, 1999.
  • 4. G. Berden and R. Engeln, Cavity Ring−Down Spectroscopy: Techniques and Applications, Wiley−Blackwell, Chichester, 2009.
  • 5. R. Engeln, G. Berden, R. Peeters, and G. Meier, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy”, Rev. Sci. Instrum. 69, 3763–3769 (1998).
  • 6. L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser”, Appl. Phys. B72, 1–5 (2001).
  • 7. J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, New Yersey, 2006.
  • 8. L. Falkowska and K. Korzeniewski, Atmosphere Chemistry, Gdańsk University Publishing Office, Gdańsk, 1995. (in Polish)
  • 9. A.M. Winer, J.W. Peters, J.P. Smith, and Jr J.N. Pitts, “Response of commercial chemiluminescent nitric oxide−nitrogen dioxide analyzers to other nitrogen−containing compounds”, Environ. Sci. Technol. 8, 1118–1121 (1974).
  • 10. W.A. McClenny, E.J. Williams, R.C. Cohen, and J. Stutz, “Methods for ambient air monitoring of NO, NO2, NOy, and individual NOz species”, J. Air Waste Manage. Assoc. 52, 542–562 (2002).
  • 11. V.L. Kasyutich, C.E. Canosa−Mas, C. Pfrang, S. Vaughan, and R.P. Wayne, “Off−axis continuous−wave cavity−enhanced absorption spectroscopy of narrow−band and broadband absorbers using red diode lasers”, Appl. Phys. B75, 755–761 (2002).
  • 12. V.L. Kasyutich, C.S.E. Bale, C.E. Canosa−Mas, C. Pfrang, S. Vaughan, and R.P. Wayne, “Cavity−enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode”, Appl. Phys. B76, 691–697 (2003).
  • 13. P.L. Kebabian, S.C. Herdon, and A. Freedman, “Detection of nitrogen dioxide by cavity attenuated phase shift spectros copy”, Anal. Chem. 77, 724–728 (2005).
  • 14. P.L. Kebabian, E.C. Wood, S.C. Herdon, and A. Freedman, “A practical alternative to chemiluminescence–based detec tion of nitrogen−dioxide: cavity attenuated phase shift spectroscopy”, Environ. Sci. Technol. 42, 6040–6045 (2008).
  • 15. H.D. Osthoff, S.S. Brown, T.B. Ryerson, T.J. Fortin, B.M. Lerner, E.J. Williams, A. Pettersson, T. Baynard, W.B. Dubé S.J. Ciciora, and A.R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring−down spectroscopy”, J. Geophys. Res. 111, D12305 (2006).
  • 16. K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring−down absorption spectrography based on filament−generated supercontinuum light”, Opt. Express 17, 3673–3678 (2009).
  • 17. K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ringdown spectroscopy”, Appl. Phys. B94, 396–373 (2009).
  • 18. J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source”, Opt. Express 16, 10178–10188 (2008).
  • 19. J. Wojtas, A. Czyżewski, T. Stacewicz, and Z. Bielecki, “Detection of NO2 using cavity enhanced methods”, Opt. Appl. 36, 461–467 (2006).
  • 20. J. Wojtas and Z. Bielecki, “Signal processing system in the cavity enhanced spectroscopy”, Opto−Electron. Rev. 16, 44–51 (2008).
  • 21. M. Nowakowski, J. Wojtas, Z. Bielecki, and J. Mikołajczyk, “Cavity enhanced absorption spectroscopy sensor”, Acta Phys. Pol. A116, 363–367 (2009).
  • 22. Z. D. Stasicka, Photochemical Processes in the Environment, Jagiellonian University Publisher, Cracow, 2001. (in Polish)
  • 23. Z. Kęcki, Fundamentals of Molecular Spectroscopy, PWN, Warsaw, 1998. (in Polish)
  • 24. R.J. Yokelson, J.B. Burholder, R.W. Fox, R.K. Talukdar, and A.R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum”, J. Phys. Chem. 98, 13144–13150 (1994).
  • 25. W.J. Marinelli, D.M. Svanson, and H.S. Johnson, “Absorption cross sections and line shape for the NO3(0–0) band”, J. Chem. Phys. 76, 2864–2870 (1982).
  • 26. A. Dziewulska−Łosiowa, Ozone in the Atmosphere, PWN, Warsaw, 1991. (in Polish)
  • 27. http://www.hitran.com
  • 28. http://badc.nerc.ac.uk/data/esa−wv
  • 29. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, Jr. C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, Y.J Mandin, S.T. Massie, J. Orphalh, A. Perrinh, C.P. Rinslando, M.A.H. Smitho, J. Tennyson, R.N. Tolchenov, R.A. Tothe, J. Vander Auwera, P. Varanasi, and G. Wagnerd, “The HITRAN 2004 molecular spectroscopic database”, J. Quant. Spectrosc. Ra. 96, 139–204 (2005).
  • 30. J.T. Hodges, D. Lisak, N. Lavrentieva, A. Bykov, L. Sinitsa, J. Tennyson, R.J. Barber, and R.N. Tolchenov, “Comparison between theoretical calculations and high−resolution measurements of pressure broadening for near−infrared water spectra”, J. Mol. Spectrosc. 249, 86–94 (2008).
  • 31. D. Lisak and J.T. Hodges, “Low−uncertainty H2O line intensities for the 930−nm region”, J. Mol. Spectrosc. 249, 6–13, (2008).
  • 32. D. Lisak and J.T. Hodges, “High−resolution cavity ring−down spectroscopy measurements of blended H2O transitions”, Appl. Phys. B88, 317–325 (2007).
  • 33. D. Lisak, J.T. Hodges, and R. Ciuryło, “Comparison of semiclassical line−shape models to rovibrational H2O spectra measured by frequency−stabilized cavity ring−down spectroscopy”, Phys. Rev. A73, 012507−13 (2006).
  • 34. http://www.systechinstruments.com/products/MM500?selected=moisture
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0051-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.